
5-1

 Chapter 5 Floating-Point Operations
 Although the MPC-2000 series can handle floating-point operations, in order to distinguish
them from general control operations, floating-point operations are executed only by the
independent FLOAT command and the following macro commands.

5-1 Floating-Point Arithmetic Macro Commands
 Macro commands are commands used for position corrections in image processing.
Because the AFFIN command can rotate two-dimensional vectors, it can efficiently perform
coordinate corrections. For the details, see Command Reference.

AFFIN Rotational conversion of point data
ATAN Obtaining an angle with ATAN
ATAN2 Obtaining an angle with ATAN (General use)
COS COS arithmetic
SIN SIN arithmetic
TAN TAN arithmetic
GETDG Angle formed by a line connecting two points and the X axis

5-2 Floating-Point Arithmetic Operations

Double-precision array variable (FP(n))

 FP(n) is a special array variable. Eight of them, FP(0)~FP(7), are prepared, and can be
used as floating-point arithmetic compatible variables. Examples are shown below. When a
formula which substitutes FP(n) is described, the formula becomes a floating-point arithmetic
formula, and data are stored in FP(n) in a floating-point format unlike ordinary variables.

▪ Display a numerical value directly	 ▪ Multiply by 10000, convert into an integer,
 in the E format.			 and display.	

#FP(1)=10/3
#pr FP(1)
 3.333333E+00

#FP(1)=10/3
#pr FP(10000,1)
 33333

▪ Calculation of Napier's constant	 ▪ Solution of a quadratic equation x2 + 4x + 3 = 0
10 FLOAT FP(2)=1
15 a=1
20 FOR i=1 TO 100
30 a=a*i
40 FLOAT FP(2)=FP(2)+1/a
50 NEXT
70 FORMAT "0.0000"
80 PRINT STR$(FP(10000,2))
#run

 2.7182

10 a=1 : b=4 : c=3
20 FLOAT FP(0)=(SQR(b*b-(4*a*c))-b)/2/a
30 FLOAT FP(1)=(SQR(b*b-(4*a*c))*-1-b)/2/a
40 PRINT FP(10000,0) FP(10000,1)
#run

 -10000 -30000

5-2

FLOAT command

 MPC-2000 series arithmetic operations ordinarily deal with integers. In order to
distinguish these operations, a FLOAT command is prepared. When FP(n) is specified as a
substituted variable, the FLOAT command is automatically added to the arithmetic formula.
Arithmetic operations in the FLOAT command prioritize multiplication (*) and division (/) over
addition and subtraction in the same manner as in ordinary arithmetic formulas.
Examples:
 [Example of a FLOAT command being added]	 [Example of prioritizing multiplication]

#10 fp(2)=1/3
list
10 FLOAT FP(2)=1/3
#

10 FLOAT a=SQR(3*3+4*4)
20 PRINT a
#run

 5

When a substituted variable is an ordinary integer variable, if a FLOAT command is added,
the result is that although substitution occurs as an integer, the internal arithmetic becomes
a floating-point operation. Along with this, the square root function SQR() also becomes a
floating-point arithmetic operation.

10 FLOAT a=SQR(3)*10000000
20 PRINT a
#run

 17320508

Floating-point compatible functions

 Arithmetic functions which can be used in a FLOAT command are as follows. These
functions are regarded as double-precision floating-point functions in a FLOAT command.
Their behavior differs from those in an ordinary integer arithmetic formulae.

SQR Square root calculation
SQ Square calculation
SIN Trigonometric function SIN Input is in radians.
COS Trigonometric function COS Input is in radians.
TAN Trigonometric function TAN Input is in radians.
ATAN Trigonometric function ATAN Output is in radians.
ACOS Trigonometric function ACOS Output is in radians.
RAD Conversion from degree to radian Output is in radians.
DEG Conversion from radian to degree Output is in degrees.
VAL Obtain a character string as a floating-point value.

Illustrated below is an example showing that the square sum of SIN and COS of an arbitrary
angle integer i is 1.
Because the arguments of SIN and COS are in radians, an integer value of 100 degrees is
converted to radians with an RAD() function.

10 FLOAT a=SQR(SQ(SIN(RAD(i)))+SQ(COS(RAD(i))))*1000000
20 PRINT a
#i=100
#run

 1000000

5-3

Further,  is calculated using ATAN.
Because TAN(45 degrees) = 1, ATAN(1) becomes /4 in radians.

10 FLOAT FP(0)=ATAN(1)*4
20 PRINT FP(10000,0)
#run

 31415

In order to obtain the value of p itself, the following is a short-cut.

10 FLOAT FP(5)=RAD(180)
20 PRINT FP(5)
#run

 3.141593E+00

In actual applications, there are cases where floating-point numbers in EXP expression from
external equipment are incorporated. For this, the VAL function is used.
The VAL function becomes a floating-point function in a FLOAT command and can read
character strings of a type, ±X.XXXXXXE(e)YYY

10 a$="C41$=Mx+9.7042e+002 C42$=My-6.3210e+002 "
20 FLOAT a=VAL(a$) FP(0)=VAL(0) b=VAL(0) FP(1)=VAL(0)
30 PRINT a FP(0) b FP(1)
#run

 41 9.704200E+02 42 -6.321000E+02

For conversion of FP(n) into a character string, FP$(n) is used.
Illustrated below is an expression of FP$(n) and the fixed-point format of its integer-converted
value.

10 FLOAT FP(5)=RAD(180)
20 PRINT FP$(5)
25 FLOAT A=FP(5)*1000000
30 FORMAT "0.000000"
40 PRINT STR$(A)
#run

 3.141593E+00
 3.141592

Speed of floating-point arithmetic operations

 The speed of a floating-point arithmetic operation is evaluated as follows:
LIST
95 SYSCLK=0
100 FOR i=1 TO 1000
110 FLOAT FP(0)=DEG(ATAN(5/100))
120 NEXT
130 PRINT SYSCLK
140 PRINT FP(0)
#run 95
95-
 707

5-4

 2.862405E+00

In this example, one ATAN calculation and the conversion into an angle took 707 m seconds.
Next, an example of complex arithmetic is executed.

LIST
10 SYSCLK=0
20 FOR i_=1 TO 180
30 FLOAT a_=SQR(SQ(SIN(RAD(i_)))+SQ(COS(RAD(i_))))
40 IF a_!=1 THEN : PRINT "FL_NG " : END : END_IF
50 NEXT
60 PRINT SYSCLK
#run

 145

The complex arithmetic took 145/180 = 0.806 → 806 μ seconds.
 * 66/180 = 0.366 → 366 μ seconds in MPC-2200 case.
Because complicated floating-point operations take a long time,they should beused in
complex arithmetic applies an application after evaluating the time it takes.

