
3-1

 Chapter 3 Programming

3-1 Programming Method and Tools
 Programming is performed by connecting a Windows PC through a connection cable.
Software is publicized on the net. (Downloadable for free.)

Hardware

▪ PC Windows PC (USB is available with W2K or later.)
▪ Connection (programming) cable USB-RS (USB-SERIAL conversion) Or
 Cable DOS/V (DSUB 9 pin RS-232C cable)

Software

FTMW Terminal software
Connects to MPC to perform editing, debugging, and reading/storing
from a PC. This is an indispensable application for MPC development.
The main text applies to Ver. 6.38z or later.
(Although the file name is “FTMW32.EXE”, it is called “FTMW” in the
main text.)

MPCED Offline editor
An offline editor dedicated for MPC. Color-codes control statements,
labels, and comments.

SYSLD2000 System loader
Used for version-upgrading MPC. A system loader inside a flash ROM
is rewritten.

F2KCheck Simple program checker
Checks the correspondence of IF ~ END_IF and DO ~ LOOP which
tends to become hard to keep, duplicate labels, and the like.

CUMON CUnet monitor
A tool for confirming and changing CUnet global memory and
checking CUnet mail sending and receiving.

ACTERM RS-232C general use terminal software
Used for debugging of MPC communication programs, checking
the operation of connected equipment, and the like.

 � The MPC development environment is installed with a Accel_Setup_eng.msi
 � The Accel_Setup_eng.msi can be downloaded free from our company’s home page.
 � The Accel_Setup_eng.msi should be used for the first installation. Later updating can
be performed by replacing executive files (*.EXE). (The most recent versions can be
downloaded from the web.)

 � The default setup folder is C:\Program Files\ACCEL.

3-2

3-2 Connection between MPC and PC
 ■ When using the standard COM port of PC (connection via Cable DOS/V)

M
P
C
-1000 C

E
P
-162A

A
C
C
E
L.C

O
R
P

(Shown is MPC-1000)

Windows PC

Cable DOS/V

J1 RS-232C

FTMW

 ■ When using a USB port of PC (an example of connection via USB-RS)

(Shown is MPC-2000)

Windows PC USB-RS (USB cable)

J1

USB

FTMW

 * The use of USB requires installation of a device driver.

 ■ Case of MPC-2200

C
(Shown is MPC-2200)

Windows PC Mini USB cable

J6

USB

FTMW

3-3

3-3 Starting FTMW
1) Click on FTMW shortcut icon. The following window appears.

FTMW version No.

Connect to MPC-1000/2000/2100

End FTMW

Start editor

MPC-1000/2000/2100 system loader
 FTMW operation
setup

Current COM port

Shortcut
“Start” menu
“Program
“ACCEL” group
“FTMW32”
(Example of Windows 2000)

 ■ “FTMW32 setup” screen
* Communication Port:
 When using the standard COM port of a PC, it should be one of 1~4.
 When using USB-RS, it can be detected by “USB-RS” > “Search”

 If the port number is unknown, start the device management by “Device
 Mgr” and check it by “Port (COM and LPT)”. The communication speed
 of MPC-2000 is fixed to 38400 bps.

* Communication Control Check:
 Checks whether the communication control installed in Windows is the
 Japanese version or the English version. The Japanese version of
 communication control must be installed on Japanese Windows. If the
 English version is set up by mistake and the Japanese version is set up
 again, it should be checked (requires ccc.exe.).

3-4

2) Turn on the MPC power and press the “MPC-2000 connection” button.
Connection is normal if an opening message is displayed as a prompt on an editing screen.

 ■ Meaning of the opening message
 This message is displayed at the time of FTMW connection or by VER command.
▪ Case of MPC-2000
 MPC-2000*(SH7030) BL/I 1.12_91 2012/01/30
 All Rights reserved. ACCEL Corp. .T32

▪ Case of MPC-2200
 MPC-2200L(SH7211) BL/I 1.12_91 2012/01/30
 All Rights reserved. ACCEL Corp. .T32

▪ Case of MPC-2200 with USB port ON
 #on_usb
 #ver
 MPC-2200L(SH7211) BL/I 1.12_91 2012/01/30
 All Rights reserved. ACCEL Corp. .T32
 +The USB Activated on TASK_29+

3-4 Command Input
If a command is entered after the prompt and Enter is pressed, it is instantly executed,
in what is known as direct command execution. Although the majority of commands can
be either executed directly or stated in a program, there are commands such as those for
maintenance and editing which can be used only as a direct command, and commands such
as control statements which can be written only in a program.

Usable in both Direct only Program only

ON 0
OFF 0
PRINT A
MOV L
 and the like.

LIST
MPCINIT
ERASE
RUN
 and the like.

GOTO
GOSUB
IF ~
FOR ~ NEXT
 and the like.

#ON 0<Enter> /* Direct execution. 10 ON 0<Enter> makes it a program.
#GOTO 100<Enter> /* Even if this is directly executed, nothing will happen.
#10 MPCINIT<Enter> /* If this command is programmed, the program will disappear.

 * <Enter> in this text indicates pressing down the Enter key of PC keyboard.

3-5

 ■ Execution example with a training kit (XY03)
#ON 0 /* Front panel green LED lit
#ON 1 /* Yellow LED lit
#PRINT SW(192) /* Green SW status check
0 /* 0 = OFF
#PR SW(192) /* Execute while pressing Green SW (PR is an abbreviation of PRINT)
1 /* 1 = ON
#PR IN(24) /* Parallel input with DSW set to ‘3’
48
#PRX IN(24) /* PRX is displayed in HEX 10 (Dec) = 30 (Hex)
00000030
#SETIO /* Output all OFF
#

3-5 Program Editing in FTMW
Explained here are operations which are frequently used in editing a program currently stored in
MPC by FTMW.

LIST display

The most frequently used is LIST command.
 * Format

LIST [arg1 arg2]
 arg1: Start statement number or start label
 arg2: Number of lines to display

 � LIST can be executed without any argument (below). In that case, a continuation of the
last time is displayed.

 � The display start position can be specified as the first argument in the statement number
of label (and below).

 � The number of lines to display can be specified as the second argument (below).
Thereafter, this number of lines is held.

 � LIST 0 will display from the beginning (below).

#LIST /* Start position, number of lines not specified
10 GOSUB *READ_DSW
20 _RET_VAL D
30 PRINT D
40 END
50 *READ_DSW
#

#LIST 40 /* Start position = statement number specified
40 END
50 *READ_DSW
60 DSW_=IN(24)/16
70 RETURN DSW_
#

#LIST *READ_DSW /* Start position = label specified
50 *READ_DSW
60 DSW_=IN(24)/16
70 RETURN DSW_
#

#LIST *READ_DSW 2
 /* Start position = label specified, number of
 lines to display specified
50 *READ_DSW
60 DSW_=IN(24)/16
#

#LIST 0 5
 /* Start position = top, number of lines to
 display specified
10 GOSUB *READ_DSW
20 _RET_VAL D
30 PRINT D

40 END
50 *READ_DSW
#

3-6

Inserting a line

 10 *LOOP
20 ON 0
30 OFF 0
40 GOTO *LOOP

10 *LOOP
20 ON 0
25 TIME 50<Enter>
30 OFF 0
40 GOTO *LOOP

Move the cursor to Step 30, then Ctrl+N

 10 *LOOP

20 ON 0
30 OFF 0
40 GOTO *LOOP
25 TIME 50<Enter>

LIST
10 *LOOP
20 ON 0
25 TIME 50
30 OFF 0
40 GOTO *LOOP

Describe with the statement number to

insert attached.

Deleting a line

 LIST
10 *LOOP
20 ON 0
25 TIME 50
30 OFF 0
40 GOTO *LOOP

LIST
10 *LOOP
20 ON 0
30 OFF 0
40 GOTO *LOOP

Move the cursor to a line to be deleted,

then Ctrl+Y

 LIST 0
10 *LOOP
20 ON 0
25 TIME 50
30 OFF 0
40 GOTO *LOOP
25<Enter>

LIST
10 *LOOP
20 ON 0
30 OFF 0
40 GOTO *LOOP

Input only the statement number to be

deleted.

Other key operations

3-7

3-6 Saving and Loading a Program

Saving

The F9 “Save program” saves the program in a PC, with the extension ‘F2K’. The saved
program does not have statement numbers.

Loading

The F9 “Load program” loads a program from a PC.
Statement numbers have intervals of 10 in the initial condition. If 60000 steps is exceeded,
they are automatically renumbered at intervals of 5.

Offline creation

 � Because FTMW directly operates on data in MPC, it cannot be used without connection.
However, programs can be created offline.

 � An editor should be prepared. Although MPCED is dedicated for MPC, a general-use
editor or a word processor can be used. If so, the program is saved as text data with the
extension “F2K”.

 � Program errors cannot be detected until loaded to MPC and executed.

3-8

Printing

FTMW has no printing function. Use should be made of an editor such as MPCED or word
processor software to print files saved in PC.

3-7 Offline Program Creation/Editing
 ■ Because FTMW is used while connected to MPC, a program saved in a PC cannot be
edited or created. An editor is used for offline programming. The editor is generally known
as a text editor, which include commercially marketed products, freeware, and Windows
Notepad.

 ■ “MPCED” is prepared as an editor dedicated for MPC, and has such functions as color-
coding statements, label jumping, and batch commenting/uncommenting.

 ■ In an Internet-connected environment, the command reference on the MPC-2000 site can
be directly referred to by placing the cursor on a command and pressing the F1 key (in the
same manner as referring to HELP).

 ■ As a program becomes larger, the correspondence of DO ~ LOOP, IF ~ END_IF, and the
like tend to become difficult to tell. In such a case, try using a simple checker “F2KCheck”.
It starts by the Check button of MPCED.

For example, the program above does not have correct correspondence for DO ~ LOOP and
IF ~ END_IF. This is viewed with Checker as follows. A red tab indicates a warning.

 * These are based on simple number matching. Normal behaviors of the program are not guaranteed.

3-9

3-8 Initialization
The initial setup and runtime parameters of MPC are stored in flash ROM and S-RAM.
Malfunctions occur if the parameters are disturbed by trial-and-error activities in
development or the application of static electricity during transportation (especially as a
stand-alone board), Regular initialization should be performed in the following cases.

* When a board has been transported alone.
It may be damaged during transport.
If a program is stored in a standalone board when transported for maintenance,
for example, beware of static electricity, short-circuiting or dropping a battery,
damaging the parts, condensation, and the like. Be sure to use an
antistatic bag.

* If a malfunction occurs while debugging.
If something has gone wrong while doing many different things.
If a program does not run although it has nothing wrong. (The possibility of a bug
should also be pursued.)
Etc.

* After updating the system.

 ■ Initialization commands
 MPCINIT Initializing the RAM (switches to the English mode)
 ERASE Erasing the flash ROM
 * These two should be executed as direct commands.
 ENG Switches to the English mode.
 Execution example: #MPCINIT

 #ERASE
 *
 #ENG
 #

 ■ Precautions in initialization
Initialization will clear the program, point data, and variables.
They should be saved in the PC or recorded if necessary.

3-9 I/O Check
Checking by commands

These are examples of I/O checks by direct commands.
#ON 0 /* Front panel Green LED lit
#ON 1 /* Yellow LED lit
#PRINT SW(192) /* Green SW status check
0 /* 0 = OFF
#PR SW(192) /* Execute while pressing Green SW (PR is an abbreviation of PRINT)
1 /* 1 = ON
#PR SW(195) /* Selector SW on the left side
0
#PR SW(195) /* Selector SW on the right side
1
#PR IN(24) /* Parallel input with DSW set to ‘3’
56
#PRX IN(24) /* PRX is displayed in HEX 56 (Dec) = 38 (Hex)
00000038
#SETIO /* Output all OFF

3-10

Checking by I/O Checker

For viewing all in one screen, start I/O Checker by pressing [F8] I/O Checker.
Typing IOC<Enter> also starts I/O Checker.

3-10 Language Specification

 Integer BASIC

 The MPC-2000 language is multitasking integer BASIC. Although there is no multitasking
in normal BASIC, BL/1 (Basic Language 1) of MPC-2000 can simultaneously execute up to
32 programs through time-sharing processing, and can handle complex actions of devices.

 As variables, 4-byte integer is set as the standard.
In the same manner as in the normal BASIC, variables can be used without defining them.
Variable labels must be within 15 characters. Floating-point operations necessary for
measurements and the like are realized through the FLOAT command. Only integers are
ordinarily used to prevent reduction in the processing speed and ambiguity in processing.

Although floating-point operations can deal with a wide range of numerical values, in some
programs unintended errors may accumulate and malfunctions may occur as a result.

Multi-statements

BL/1 consists of a command or formula in each line. Although the execution unit is one line,
multiple commands can be described in one line by delimiting the commands with a ‘:’ (colon).

ON 1 : TIME 100 : OFF 1 : TIME 100

The description of an IF statement can also be in one line by limiting with ‘:’.
IF i%10==1 THEN
 USB_DEL FILE$
 END_IF → IF i%10==1 THEN : USB_DEL FILE$: END_IF

3-11

Comments

 A string array starting with a ‘ (single quote) becomes a comment and will not be executed.
However, the interpreter consumes a slight amount of time even with a comment.
 Try to use a ‘ (single quote) comment in an unexecuted section (such as the top of a program).

Multitasking

 In actual device control scenes, various actuators must be concurrently controlled.
However, in the general software language, multitasking requires a complicated procedure
and even if workable, the processing speed is generally slow. This is because
multi-tasking was developed in the field of information processing in general and assumes
its operation in a large-scale system.
 On the other hand, the multitasking in BL/1 is specialized in device control and assumes
its operation in a small-scale system. Therefore, it is designed to be used through very
simple procedures.

1) FORK
In a normal BASIC-type interpreter, a program is run by sequentially executing a command
list. There is only one order of execution. For example, commands in the range of 10~30
continuously repeated in the following example.

10 DO
20 ON 1 : TIME 100 : OFF 1 : TIME 100
30 LOOP

However, in MPC-2000 multiple execution paths can be started by the FORK command.
FORK is a command corresponding to RUN and means that RUN *TASK is executed as Task 1.
Tasks 1~31 can be specified, and 31 programs can be simultaneously executed.
The program executed first by RUN becomes Task 0.

10 FORK 1 *TASK
20 DO
30 ON 1 : TIME 100 : OFF 1 : TIME 100
40 LOOP
50 *TASK
60 DO
70 ON 2 : TIME 100 : OFF 2 : TIME 100
80 LOOP

2) Task management
A task whose execution has already begun can be stopped in the middle or resumed.
 QUIT n Command to quit a task.
 PASUE n Command to pause a task.
 CONT n Command to resume a paused task.
In addition, there may be needs to obtain the status of another task or one’s own task number.
 TASK() Check whether another task is being executed or stopped.
 TASKn One’s own task number can be always obtained with a reserved variable.

3) Semaphore
The most difficult multitasking in an actual scene uses one actuator or output by
multiple tasks. For example, two tasks output character strings to RS-232C CH1 in the
following example.

10 FORK 1 *TASK1
20 FORK 2 *TASK2
30 END
40 *TASK1
50 DO

3-12

60 FOR i=&h0041 TO &h004A
70 PRINT# CHR$(i)
80 NEXT
90 PRINT# "\r\n"
100 TIME 500
110 LOOP
120 *TASK2
130 DO
140 FOR j=&h0030 TO &h0039
150 PRINT# CHR$(j)
160 NEXT
170 PRINT# "\r\n"
180 TIME 500
190 LOOP

The result becomes as follows, wherein outputs from two tasks are intermingled.
[RS-232C output]
ABCDEFGH0123456IJ
789
ABCDEFGH0123456IJ
789

Then, an interlock between tasks known as a semaphore is added. Examples are WAIT
ON(-1) and OFF -1 in the following program.

10 FORK 1 *TASK1
20 FORK 2 *TASK2
30 END
40 *TASK1
50 DO
55 WAIT ON(-1)
60 FOR i=&h0041 TO &h004A
70 PRINT# CHR$(i)
80 NEXT
90 PRINT# "\r\n"
95 OFF -1
100 TIME 500
110 LOOP
120 *TASK2
130 DO
135 WAIT ON(-1)
140 FOR j=&h0030 TO &h0039
150 PRINT# CHR$(j)
160 NEXT
170 PRINT# "\r\n"
175 OFF -1
180 TIME 500
190 LOOP

The result is an organized output as follows.
[RS-232C]
0123456789
ABCDEFGHIJ
0123456789
ABCDEFGHIJ
0123456789

A semaphore means a wooden-bar signal which was used for railroads to prevent collisions.
If tasks are likened to multiple railroads, a semaphore (wooden-bar signal) prevents trains
from colliding at an intersection of railroads (tasks). Although memory I/Os such as WAIT
ON(-1) are used as semaphore, any output port may do if ON() function covers the I/O area.

3-13

4) SWAP command
When a program is executed and stopped by CTRL_A, the following display may be output.

 *0! [20]
 ! is a time-wasting task.

Indicated after the task number is that ! is wasting time.
Multitasking may look to human eyes as if multiple programs are running at the same time,
for the CPU it is simply executing tasks sequentially by time-sharing. BL/1 adopts a simple
time-sharing multitasking called the round-robin scheme. Each task is switched at every 3
msec. However, if there is a condition-wait command such as TIME, WAIT, and SW(), the task
is forced to be switched. It is because if the condition is not met, executing that task would
be a waste of time.
Among condition-waiting, the following program generates a waste of time.
Therefore, if a is 0, forced task switching should be generated.

10 DO
20 IF a==1 THEN : BREAK : END_IF
30 LOOP
#run

 *0! [20]
 ! is a time-wasting task.

For this, SWAP command should be added as follows.
10 DO
20 IF a==1 THEN : BREAK : END_IF
25 SWAP
30 LOOP
#run

 *0 [25]

SWAP command is a command to generate a forced task switching.
Device control is a collection of processes which take certain actions if some conditions are
met. Therefore, unless those conditions are met, nothing is performed, in which case SWAP
is added to suppress a waste of time. Alternatively, if more time is expected to pass until all
the conditions are met, of if there is no need to respond at a high speed in the first place, a
timer command such as TIME 100 is used instead of SWAP. TIME also performs forced task
switching, and further has the task sleep for a specified time. Time not spent by
that particular task is effectively used by other things or tasks.

Debugging

1) BREAK_POINT
In BL/1 a program can be stopped at up to eight specified statement numbers by a BREAK_
POINT command. (Label specification is also possible.)
If a program number is specified as follows, the specified line is displayed.
Afterwards, the statement number of the specified line is displayed in reverse.
As break points, statement numbers are specified in order. Releasing a specified statement
number is done by inputting the same number. To check which statement numbers are
registered, execute BKP command with no argument. In addition, to release all break points,
enter BKP 0.

30 FORK 2 *bb
40 END
110 *bb
120 DO
130 FOR i_=8 TO 15

3-14

140 ON i_ : TIME 50 : OFF i_150 NEXT
160 LOOP
#bkp 110 140

110 *bb
140 ON i_ : TIME 50 : OFF i_
#bkp
BREAK_POINT 0=110
BREAK_POINT 1=140
#bkp 110

110 *bb
#bkp
BREAK_POINT 0=140
#

When break points are actually specified and RUN is executed, execution is stopped at
 specified points.
 Then, the line where it is stopped and the task number are displayed. By pressing
 n<ENTER> execution is resumed up to the next break point. In this program, a break
 occurs each time the statement number 30 is passed (before execution).

To perform a stepwise forwarding (continual line-by-line execution), press t<ENTER>.
 To release the stepwise forwarding, press the <ENTER> key.

While stopped by a break, the value of a variable or function can be referred to.
Press ‘p’ and subsequently enter the variable name or function name.

Break points can also be added.
Press ‘b’ and enter a statement number to add a break point.

To release a break point while in a break, enter “u”.

To end program execution, press ‘e’.
#list *aa
50 *aa
60 DO
70 FOR i_=0 TO 7
80 ON i_ : TIME 200 : OFF i_
90 NEXT

 100 LOOP
#bkp 100

100 LOOP
#run *aa
50-##

 100 LOOP <00>
 #t

60 DO <00>
#t
70 FOR i_=0 TO 7 <00>
#t
80 ON i_ : TIME 200 : OFF i_ <00>

 ?pi_
#PR i_-> 0
#
100 LOOP <00>
?b80

 #BKP 80->
80 ON i_ : TIME 200 : OFF i_
#

3-15

80 ON i_ : TIME 200 : OFF i_ <00>
?p i_
#PR i_-> 0
#
80 ON i_ : TIME 200 : OFF i_ <00>
#
80 ON i_ : TIME 200 : OFF i_ <00>
?p i_
#PR i_-> 2
#
80 ON i_ : TIME 200 : OFF i_ <00>

 ?u
#
100 LOOP <00>
#
100 LOOP <00>

 ?e

2) If a FOR statement is set as a break point, …
This is a precaution for a case where 20 is set as a break point in the following program.
The execution order becomes 20 -> 30 -> 40 -> 30 -> 40 -> 30 -> 40 -> 40, and the FOR
statement is executed only once in the FOR loop.

10 DO
20 FOR i=1 TO 3
30 PRINT i
40 NEXT
50 LOOP

This is because the FOR statement includes an initialization formula. At the time of the
initial compilation, the system embeds a place after TO of the FOR statement for the NEXT
statement. The NEXT statement evaluates the limit value and the STEP value of the FOR
statement at every execution, and if it is looped, moves the control to immediately after the
FOR statement. Therefore, the FOR statement itself is not executed in the loop.

3) BREAK_POINT in multitasking
In a program such as the one below, break points can be set after execution.
Once set, the break points become immediately effective. In other words, debugging can be
started with a program under execution. The rest of its usage is the same as in single tasking.

LIST
10 AAA=111 : B=123
20 FORK 1 *aa
30 FORK 2 *bb
40 END
50 *aa
60 DO
70 FOR i_=0 TO 7
80 ON i_ : TIME 200 : OFF i_
90 NEXT
100 LOOP
110 *bb
120 DO
130 FOR i_=8 TO 15
140 ON i_ : TIME 50 : OFF i_
150 NEXT
160 LOOP
#run
#bkp 80
80 ON i_ : TIME 200 : OFF i_
##

3-16

80 ON i_ : TIME 200 : OFF i_ <01>
#
80 ON i_ : TIME 200 : OFF i_ <01>
#t
90 NEXT <01>
#t
80 ON i_ : TIME 200 : OFF i_ <01>
#t
90 NEXT <01>
?p i_
#PR i_-> 2

Below is a case where break points are set in different tasks. While in a break, a break of
another task occurs, a waiting state is entered. Therefore, if <ENTER> execution is repeated,
alternate break processes of Task 1 and Task 2 occur.
In each break, if the value of i_ is referred to, each task shows a different value.
In addition, if ‘u’ is entered in the middle, break number 80 is released, and afterwards only
Task 2 will have breaks.

#bkp 80 140

80 ON i_ : TIME 200 : OFF i_

140 ON i_ : TIME 50 : OFF i_
##
80 ON i_ : TIME 200 : OFF i_ <01>
#
140 ON i_ : TIME 50 : OFF i_ <02>
#
80 ON i_ : TIME 200 : OFF i_ <01>
#
140 ON i_ : TIME 50 : OFF i_ <02>
#
80 ON i_ : TIME 200 : OFF i_ <01>
?p i_
#PR i_-> 6
#
140 ON i_ : TIME 50 : OFF i_ <02>
?p i_
#PR i_-> 15
#
80 ON i_ : TIME 200 : OFF i_ <01>
?u
#
140 ON i_ : TIME 50 : OFF i_ <02>
#
140 ON i_ : TIME 50 : OFF i_ <02>
?

4) SLOW_RUN
Operating a device for the first time requires considerable precaution. In such a case,
SLOW_RUN slows down the execution speed of a program. For example, the following
command inserts a timer of 1000 msec at every line in executing Task 10.

SLOW_RUN 10 1000

The arguments are the task number and wait time for each line. A maximum of 4000 msec
can be specified.
 Some programs such as WS0() and WS1() have a time-out function. If the execution
speed of a Specific task is slowed down by SLOW_RUN, a trouble occurs in debugging due to
time-out. In such a case, the following should be executed.

SLOW_RUN TMOUT

3-17

By this, the time-out time is multiplied by a factor of 10. If further room is necessary, adding an
argument of 10000 multiplies it by a factor of 100. This is because the down count timer which
is subtracted at every 100 msed is set to be subtracted at every 10000 msec, or 10 seconds.

SLOW_RUN TMOUT 10000

Global variables and task-local variables

 Roughly speaking, BL/1 has two kinds of variables; global variables and task-local
variables. Global variables are variables which can be used anywhere by any task. They can
be regarded as normal variables. Task-local variables are variables unique to BL/1 and task
different values in different tasks.
 An example is given below. A variable such as port_ given a ‘_’ code at the end becomes
a task-local variable. In the example below, a subroutine *ON_PORT turns on a different port
for each task which calls it.
When this subroutine is simultaneously used by multiple tasks, if port_ were a normal global
variable, multiple tasks would end up using the same variable at the same time, which would
make the processes unstable.
 Because port_ can have independent values among different tasks, such process conflict
due to sharing the same variable will disappear.

*ON_PORT
 port_=X(TASKn)
 ON port_
 RETURN

However, task-local variables are difficult to monitor in debugging, regarding the kind of
values they have. Even if

print port_

is executed after stopping a program, only the value of port_ of an executed task, namely task 0 can
be referred to. In order to solve this, BL/1 prepares pra command as follows.

pra port_

Although the pra command is usually used to display a list of array variable elements, it
displays values by tasks for a task-local variable.

Reserved constants and reserved variables

 BL/1 has reserved constants and reserved variables which are prepared in advance.
Registered as the reserved constants are numerical values which are fixed by the system for use.
 The following can be listed as an example. X-A has a value of &H80000001 and specifies
the X-axis in RMVS command. In this manner, reserved constants are prepared so that
command functions can be more efficiently described.

RMVS X_A 1000

There are a considerable number of reserved constants, and their use varies widely
depending on commands. Refer to such information by searching with condition narrowed
as [Group] -> [Reserved Constants] in the Command Reference on the web.
Reserved variables are variables such as TASKn and SYSCLK which are constantly updated
by the system. Presently, there are the following reserved variables and constants.

[Reserved Variables]
Global Variables Use
SYSCLK Automatically incremented at every 1 msec. CPU clock reference.
TASKn A variable which returns the self task number.
SEC Automatically incremented at every 1 second.

3-18

PG_TASK0 A variable which returns the PG number assigned to Task 0.If the
PG does not exist, -1 is returned.

MBK_ERR The number of errors of MEWNET communication.
MBK_CMD Command which could not be processed by MEWNET

communication.If prx MBK_CMD returns 4142, it means AB.
VER$ Version character string. For the version number, see MBK(8053).
CUM_PNT
CUM_SRC
CUM_NUM
CUM_CNT
CUM_ERR
CUM_TASK

Used by CUnet CU_POST.

FILE$,FILE$1,FILE$2 Used by USB memory command USB_WRITE.
CHK_SUM Program check sum. Checking if it is the same program

immediately after loading it.
V_PGA,V_PGB Return value of MPC-1000. Current position, version, etc.
Task Variables
timer_ Time-out processing. It is down-counted at every 0.1 second and stops at 0.
ptr_ Character string processing. Character string pointer.
rse_ Communication error status.
err_ Information on an error while using ON-ERROR.

 * Although there are other reserved variables, they can be freely used if no functional conflict exists.

[Reserved Constants] “Those displayed as a list of constants” by Vlist
Data Type Specification
Lng

Touch panel I/O
Long type (2 words) specification S_MBK,OUT

Wrd Word type specification
Int Word type specification (signed) MBK()
NIL 0. Used to explicitly indicate 0.
PG interrupt setup
CMP_PLS

MPG-2314

Compare current pulse counter and COMP+. INSETCMP_CNT Compare encoder counter and COMP+.
C_MORE Interrupt if counter >= COMP+. INTA_ON/_OFF

INTB_ON/_OFFC_LESS Interrupt if counter < COMP+.
CUnet

SA0~SA15
MPC-Cunet

I/O number corresponding to CUnet
station address ON/OFF SW()

SA0_B
~SA15_B

I/O bank number corresponding to
CUnet station address IN/OUT

Communication
EOL

Serial
communication

Receiving terminator setup
INPUT#

CHR_C Number of received characters
specification

CLR_BUF Receiving buffer clear
TMOUT Non-reception time-out specification
LONG_PRG

Touch panel
Conversion of program number into long S_MBK

B7N,B7E,B7O
B8E,B8O Frame parity specification MEWNET
Ub,Lb Touch panel Higher, lower order byte specification IN() * MBK I/O rea
CompoWay
COMPOWAY

Serial
communication OMRON CompoWay specification PRINT#

RS485,RTS Serial
communication

Performs RTS control. RS-485
communication. PRINT#

3-19

Miscellaneous
_NEXT Control statement Option of RESUME RESUME
OFF SENSE_ON/_OFF Option of SENSE_ON/OFF SENSE_ON/_OFF

AVOID IO Command invalidation ON,OFF,OUT,
PULSE_OUT

ON_USB
USB

USB enable port MPC-1000
USB,USB0,USB1
USB2,COM USB channel specification USB_WRITE,

INPUT#
AD7890-10 AD At the time of replacing AD7890-10 SET_ADAD0,AD1 AD board selection
SET_SF NC command Option of GET_CODE GET_CODE
ALLOW Unused Deleted in the future
Pulse Generation
SACL

MPG-2314/-
2541

Sigmoid specification ACCEL
VOID Invalid argument MOVS,MOVL
X_A X-axis specification

PG in general

Y_A Y-axis specification
Z_A Z-axis specification
U_A U-axis specification
ALL_A All-axis specification
VOID_X Exclude X-axis = Y_A|U_A|Z_A
VOID_Y Exclude Y-axis = X_A|U_A|Z_A
VOID_Z Exclude Z-axis = X_A|Y_A|Z_A
VOID_U Exclude U-axis = X_A|Y_A|Z_A
X_E

MPG-2314

X-axis error specification

RR(X_E)==0
Y_E Y-axis error specification
Z_E Z-axis error specification
U_E U-axis error specification
ALL_E All-axis error specification
POS_L MPG-2314/-

2541
Positive large number HOMENEG_L Negative large number

XIN0~XIN3

MPG2314 HPT input specification IN1, IN2
short IN3 non-connection HPT()

XINP,XALM
YIN0~YIN3
YINP,YALM
UIN0~UIN3
UINP,UALM
ZIN0~ZIN3
ZINP,ZALM
N_SDX

MPG-2541 HPT()

N_SDY
N_SDU
N_SDZ
P_SDX
P_SDY
P_SDU
P_SDZ
STP_I MPG-2314/-

2541
Immediate stop STOPSTP_D Slow-down and stop

3-20

INP_ON

MPG-2314

Valid with in-position ON

INSET

INP_OFF Valid with in-position OFF
INP_NO In-position invalid
ALM_ON Valid with alarm ON
ALM_OFF Valid with alarm OFF
ALM_NO Alarm invalid
NO_PHASE Counter input
PAHSE1 Single encoder input
PHASE2 Double encoder input
PHASE4 Quadruple encoder input
UP_DWN Up-down counter
MD_2PLS CW/CCW pulse output
MD_DPLS Direction instructing pulse output
LMT_ON X-LMT ~ Z-LMT ON valid
LMT_OFF X-LMT ~ Z-LMT OFF valid
SLMT_ON Soft limit valid
SLMT_OFF Soft limit invalid
IN0_ON Valid with XIN0 ~ ZIN0 ON
IN0_OFF Valid with XIN0 ~ ZIN0 OFF
IN1_ON Valid with XIN1 ~ ZIN1 ON
IN1_OFF Valid with XIN1 ~ ZIN1 OFF
IN2_ON Valid with XIN2 ~ ZIN2 ON
IN2_OFF Valid with XIN2 ~ ZIN2 OFF
IN3_ON Valid with XIN3 ~ ZIN3 ON
IN3_OFF Valid with XIN3 ~ ZIN3 OFF
CW Circular interpolation specification SHOM/MOVT
CCW Circular interpolation specification
SLMTp Soft limit + error

LMT() or PGE()
SLMTn Soft limit – error
LMTp Limit + error
LMTn Limit – error
EMG EMG input error
ALM ALM input error
IN0~IN3 Cause of stop PGE()CRL_ER Error reset
X_C Counter specification

STPSY_C Counter specification
Z_C Counter specification
U_C Counter specification
VRING Ring counter setup MiscellaneousPR_CHK Operation precheck
PGA,PGB MPC-1000 PG active specification MPC-1000 only

* Reserved constant can only be read out, and any attempt of setting a value will cause an error.

Data area

 Separate from arbitrarily-usable variables, there are reserved arrays MBK(), X(), Y(), U(),
and Z(). MBK() is an array for a touch panel, if the touch panel is not used, it can be used
as a general memory area.
 X() ~ Z() are point data used for industrial robot-like purposes. When not used as point
data, they can be used as array variables in the same manner as MBK().

3-21

 In addition, an up a two-dimensional array variable can be defined and used by the DIM
command.

Array Element Type and Range Purpose Modification
Method

MBK(n) Word (2 bytes)0~8099 Shared memory with
touch panel

S_MBK
MBK(n)=m

X(n), Y(n), U(n), Z(n)
Used as P(n) in PG
command.

Long(4bytes)
MPC-1000/2000 1~7000
MPC-2100 1~16000

Robot coordinate point
data or data area

SETP
X(n)=m

Array by DIM command Up to 20000 in total - -

Character string variables

 Character string variables are variables given $ at the end. Up to 128 character strings
can be used, and the size of each character string is up to 255 bytes.
 Character string operations are also supported, and combining can be performed using a ‘+’
operator.

#a$="12345"+chr$(&h41)+"bcdef"
#pr a$
 12345Abcdef

 As for search/editing of a character string, instead of a method centering the BASIC
standard MID$, C language-like processing is made possible, using a task-local variable “ptr_”
which is a pointer. (See SERCH, SERCH$, VAL, STRCPY, etc.) For extracting a numerical
value in a character string, powerful VAL function is prepared. The numerical conversion
process of the above character string a$ can be described as follows.

#pr val(a$)
 12345

A character string variable is handled as a point (actual address) in a normal arithmetic
formula. Therefore, extracting a partial character string can be freely performed by the following
operation for example.

10 a$="1234567890abcdefgABCDEFG"
30 SERCH a$ "a"
35 s=ptr_-1 : e=SERCH$("A") : c=e-s-1
40 ptr_=s
50 c$=PTR$(c)
60 PRINT c$
#run
 abcdefg
#

Arithmetic formula

In an arithmetic formula of BL/1, although multiplication and division are given priority over
addition and subtraction, others are executed in order from the left. Other prioritized
operations are enclosed with ().

a=1+2*3 a becomes 7 because execution is done in the order of 2 * 3 => 6, 1 + 6 => 7
a=(a1+a2+a3+a4)/4 Entered in a is the sum of a1 to a4 divided by 4 (average).
c=sqr(a*a+b*b) This becomes square root of the sum of squares of a and b.

The length of formula (including conditional expression) is set within 102 characters, and
although a considerably long formula can also be described, if there are too many ()s, the

3-22

internal memory is wasted, and a stack overflow may occur. Operations should be described
simply and efficiently.

[Dyadic operator]
+ Addition << Left shift (× 2n)
- Subtraction >> Right shift (/2n)
* Multiplication , Word synthesis
/ Division ; Upper-order byte
% Multiplication/division & Logical product
^ Exclusive logical sum | Logical sum

Conditional expressions

 The difference between a conditional expression (logical formula) and an arithmetic
formula is that although the result of an arithmetic formula becomes an integer, the result of
a logical formula takes only the value of 1 (true) or 0 (false).
 a==5 a and 5 are compared to obtain 1 or 0. The result is 1 (true) if they are
 equal, or 0 (false) if they are not equal.

A logical formula becomes an argument of IF statement and others as follows. If true, the
part from immediately after THEN to ELSE or END_IF is executed.

IF a==5 THEN : ON 1 : ELSE : ON 2 : END_IF

a==5&(b==3)

In this example, a is compared with 5, and AND is operated on the result and the result of
comparing b and 3 is taken. Therefore, the whole becomes true when two conditions that a
is 5 and that b is 3 are satisfied. In the same manner, the following case contains OR.
The reason b==3 is enclosed with () is to prioritize this comparison operator.

a==5|(b==3)

This case becomes true (1) if a is 5 or b is 3.
Whether this kind of logical formula actually becomes true or false can be checked by

print a==5|(b==3)

According to this logical rule of taking 1 or 0, a logical formula can be simplified.
Simplification leads to the speed increase of processing.
 For example, WAIT is a command to continue waiting until a logical formula which is its
argument becomes true (1), and the condition-wait can be described as follows.

WAIT (SW(0)==1)& (SW(2)==1)& (SW(4)==1)& (SW(7)==1)& (SW(-1)==1)
↓
WAIT SW(0)& SW(2)&SW(4) & SW(7) & SW(-1)

This is a simplification which is possible because SW function outputs the value of 1 when it
is true. If logical reversal is necessary, it can be described in the following manner.

WAIT (SW(0)==1)& (SW(2)==1)& (SW(4)==0)& (SW(7)==0)& (SW(-1)==1)
↓
WAIT SW(0)& SW(2)&@SW(4) & @SW(7) & SW(-1)

@SW() function is the logical reversal of SW().
In logical operations, not only simple logical comparisons but also logical formula having
character strings and arrays intermingled can be described.
In such a case, the comparison formula should be enclosed with () and combined with &
and/or |.

IF (a$=="123")&(b==100)&(mbk(5)>1000) THEN

3-23

In an IF statement, using AND or OR between arguments is also possible.
IF a==1 AND b==2 THEN

In general, a complex logical operation which connects multiple elements becomes faster in
processing when it is assembled into one formula, which makes it harder to read.
Grouping the formulae by their significance and connecting the logics with AND and OR in
the end would make the program easy to understand.

[Logical operator]
== Coincide with < Smaller than
!= {<>} Not coincide with >= Equal to or greater than
> Greater than =< Equal to or smaller than

Control statements

1) Repetition and condition-wait
 WHILE conditional expression ~ WEND Conditional repetition
 DO ~ LOOP, FOR ~ NEXT Repetition, sequential processing
 BREAK Escape from repetition
 WAIT Conditional expression

 � Infinite loop
 DO
 ON 0
 TIME 500
 OFF 0
 TIME 500
 LOOP

 � Repetition for 10 times
 FOR CNT=1 TO 10
 ON 0
 TIME 500
 OFF 0
 TIME 500
 NEXT CNT /* Return to FOR by incrementing CNT by 1

 � Escape from repetition by BREAK
 CNT=0
 DO
 CNT=CNT+1
 IF CNT>10 THEN : BREAK : END_IF /* Escape from DO~LOOP
 ON 0
 TIME 500
 OFF 0
 TIME 500
 LOOP

 � Escape from repetition by GOTO
 CNT=0
 DO
 CNT=CNT+1
 IF CNT>10 THEN : GOTO *PASS : END_IF /* Escape from DO~LOOP
 ON 0
 TIME 500
 OFF 0
 TIME 500
 LOOP
*PASS

 * Escape from FOR ~ NEXT by BREAK or GOTO is also possible

3-24

 � Condition-wait
 WAIT SW(192)==1 /* Wait for SW(192) to become ON

2) Conditional branch
 IF ~ THEN ~ [ELSE] ~ END_IF Branch
 SELECT_CASE ~ END_SELECT Branch by a numerical value

 � IF statement, suitable for simple conditional judgment.
 IF SW(195)==1 THEN /* If the front panel selector SW is ON,
 GOTO *MANU
 ELSE /* Otherwise
 GOTO *AUTO
 END_IF
*MANU
 OFF 0 : ON 1
 PRINT "MANUAL MODE"
 END
*AUTO
 ON 0 : OFF 1
 PRINT "AUTO MODE"
 END

 � SELECT_CASE statement. When there are multiple conditions.
 OFF 0 : OFF 1 : OFF 2 /*Turning off LED
 DSW=IN(24)/16 /* Reading out the front panel DSW
 SELECT_CASE DSW /* Examining the DSW value
 CASE 0 /* If DSW = 0
 ON 0 : OFF 1 : OFF 2
 CASE 1 /* If DSW = 1
 OFF 0 : ON 1 : OFF 2
 CASE 2 /* If DSW = 2
 OFF 0 : OFF 1 : ON 2
 CASE_ELSE /* Otherwise
 ON 3 : TIME 10 : OFF 3
 END_SELECT

 � When VOID is specified as the argument of SELECT_CASE, a CASE statement proprietary
logical expression is evaluated and executed. When multiple conditions must be
examined, it is more efficient than listing those IF statements.

 SELECT_CASE VOID
 CASE SW(192)==1 /* Green SW ON -> Green LED ON
 ON 0
 OFF 1 2
 CASE SW(193)==1 /* Yellow SW ON -> Yellow LED ON
 ON 1
 OFF 0 2
 CASE SW(194)==1 /* Red SW ON -> Red LED ON
 ON 2
 OFF 0 1
 CASE SW(195)==1 /* Selector SW right side -> LED OFF
 OFF 0 1 2
 CASE_ELSE
 END_SELECT

3) Subroutines
 GOSUB,RETURN Jump to a subroutine, return from a subroutine
 _VAR,_RET_VAL An argument to a subroutine, a returned value from a subroutine

Making subroutines for individual work units and calling them from the main routine will

3-25

make the program easy to read.
If there is only GOSUB but no RETURN, a “Stack overflow” error will occur.

50 DO
60 GOSUB *SUB1
70 *OFF_ LED
80 OFF 0 1 2
90 TIME 100
100 LOOP

110 *SUB1

120 ON 0

130 TIME 100

140 GOSUB *SUB2

150 RETURN
160 *SUB2

170 ON 1

180 TIME 100

190 GOSUB *SUB3

200 RETURN
210 *SUB3

220 ON 2

230 TIME 100

240 RETURN

main routine

Subroutine

Subroutine

Subroutine

 � An argument to a subroutine can be given to GOSUB. In the subroutine, the value is
obtained by the _VAR command.

 � A return value from a subroutine can be given after RETURN. Obtaining the return value is
by _RET_VAL.

 � In combination with a local variable, sharing a subroutine among tasks becomes possible.
10 OFF 0 1 2
20 TIME 500
30 GOSUB *ON_LED 0 1 2 /* Calling a subroutine with an argument
40 END
50 *ON_LED
60 _VAR A_ B_ C_ /* Receiving an argument (one with _ is a local variable.)
70 ON A_
80 TIME 500
90 ON B_
100 TIME 500
110 ON C_
120 RETURN

 10 GOSUB *READ_DSW
20 _RET_VAL D /* Receiving a return value
30 PRINT D
40 END
50 *READ_DSW
60 DSW_=IN(24)/16 /* Reading in the front panel DSW
70 RETURN DSW_ /* DSW_ is a return value.

ON_ERROR

 In BL/1, if an error occurs during a program execution, execution of the program stops.
Because an error is usually fatal, the program should be modified based on the error so that
no error will occur.
 Although that would be sufficient while developing a program, once the actual operation
is started, stopping the program is not preferable. ON_ERROR can capture an error during
execution and avoid error processing program. In the ON_ERROR process, the error code
and the statement number where the error occurred are stored in a task variable err_.
The error code can be obtained by err_>>24.
 If an error further occurs in the error processing program, the error is only displayed but
no jump to the error processing program occurs. The error jump prohibited state is released
only when GOTO command or RESUME command has been executed.
For error codes, see the Error Code Table at the end of the volume.

1) Recoverable case
In external equipment such as USB memory, runtime errors can occur due to defects,
degradation, and/or insufficient reliability. In such a case, a treatment such as RST_USB is
performed to have the process retried. In this case, as a command to restore the program

3-26

control to the original position, RESUME is available.
RESUME Return to the command wherein an error occurred
RESUME _NEXT Return to the line following the command where an error occurred

2) Unrecoverable case
Errors occurring due to mistaken I/O numbers or variable setup during operation require the
program to be modified later. In such a case, a process to notify the touch panel or the like
of the error character string and the location of occurrence is performed.

 ON_ERROR *err
 FILE$="TEST.TXT"
 DO
 USB_WRITE "TEST\n"
 OUT 0 -10000
 LOOP
*err
 SELECT_CASE err_>>24
 CASE 53
 CASE 54
 CASE 55
 CASE 56
 RST_USB : TIME 500 : INC usb_err : RESUME
 CASE_ELSE
 S_MBK err_>>24 100 : S_MBK err_&&H00FFFFFF 101 : S_MBK ERR$(err_) 102 40
 ON PATRIGHT
 END_SELECT
 END
#run
#pr mbk(100)
 9
#pr mbk(101)
 50
#pr mbk$(102,40)
 I/O range is exceeded.

Usage of SELECT_CASE VOID

SELECT_CASE has an expanded description method.
Usually, control is performed by categorizing a variable as shown below.

DO
SELECT_CASE A
CASE 100 : FORK 1 *SHORI : WAIT SW(192)==0
CASE 101 : FORK 1 *SHOR2 : WAIT SW(193)==0
CASE 102 : FORK 1 *SHOR3 : WAIT SW(194)==0
CASE_ELSE
END_SELECT
LOOP

However, if an argument is set as VOID as follows, CASE statement executes an independent
logical evaluation. Because an exclusive processing can be performed out of parallel
conditions, a clean description becomes possible by eliminating a complex IF_ELSE syntax.

DO
SELECT_CASE VOID
CASE SW(192)==0 : FORK 1 *SHORI : WAIT SW(192)==0
CASE SW(193)==1 : FORK 1 *SHOR2 : WAIT SW(193)==0
CASE SW(194)==0 : FORK 1 *SHOR3 : WAIT SW(194)==0
CASE_ELSE
END_SELECT
LOOP

