
4-1

 Chapter 4: Basics of Control Programs
 In BL/1 various kinds of commands are prepared, dealing with each of the control
actuators, and learning them all at once would be a huge undertaking. Here, several
representative commands are introduced according to the control contents. It is hoped that
a rough programming overview can be understood.
* Concerning the actual usage of commands, Command Reference should be referred to.
As to practical application examples and writing programs, an MPC-2000 Tutorial is provided
as a separate volume. Also available is a training kit XY03 according to its content.
 The tutorial covers basic programs on XY control, touch panel interface, CUnet operation,
and communication based on the training kit equipment.

4-1 I/O Control
ON/OFF

ON/OFF control in BL/1 is performed by the ON/OFF command. For example, ON/OFF
repetition at 0.1-second intervals is described as follows. DO~LOOP is a control statement
which indicates a return immediately after DO when LOOP is encountered.

DO
 ON 1
 TIME 100
 OFF 1
 TIME 100
LOOP

Sensor/input logic detection

Next, it is made to be a program which detects a sensor and turns ON/OFF once if detected.
DO
 WAIT SW(193)==1
 ON 1
 TIME 100
 OFF 1
 TIME 100
 WAIT SW(193)==0
LOOP

First WAIT SW(193)==1 means waiting for a sensor connected to an input port 193 to turn ON.
WAIT SW(193)==0 confirms that the sensor turns OFF. Thereby, ON/OFF is repeated only for
a change.

Condition/logical operations

In I/O controls, complicated logical operations may be performed. For example, although
there were only conditions of SW(193) in the earlier example, a condition that SW(192) is
also ON can be added as follows.
(SW(193)&SW(192)) is an AND operation of the values of SW(192) and SW(193). Therefore,
unless both of those values are 1, the value of (SW(193)&SW(192)) does not become 1. This
becomes a condition in which both of them are ON.

 DO
 WAIT (SW(193)&SW(192))==1
 ON 1
 TIME 100

4-2

 OFF 1
 TIME 100
 WAIT SW(193)==0
 LOOP

Prepared for SW function is a separate @SW() function having an inverse value.
WAIT (SW(193)&@SW(192))==1

 In this case, because @SW(192) has a reverse logic, it becomes 1 at OFF. Therefore, this
example holds true in an AND condition wherein 193 is ON and 192 is OFF.
 This kind of logical formula is used in IF and WHILE statements other than a WAIT
statement, which has a positive logic when the values of all the formulae become 1.
Therefore, WAIT SW(192)==1 and WAIT SW(192) wait for the same timing. Because a
comparison operator == takes 1 when the compared results are equal and 0 when they are
not, in SW(192)==1, the value of SW becomes 1, and comparison with 1 also takes the value 1.
Thereby, complicated logical conditions of SW can be simply described.

 IF SW(192)|SW(193)|SW(194)|flag THEN Holds true when either 192, 193, or 194 is ON,
 or a variable flag becomes 1.
 IF (SW(192)&SW(193))|SW(194) THEN Both 192 and 193 are ON, or 194 is ON.
 IF (SW(192)&SW(193))|@SW(194) THEN Both 192 and 193 are ON, or 194 is OFF.

Time out processing

For time out processing, a timer (down-counting variable) is used. When a positive number
is given to a timer, it decrements every 0.1 second and stops at 0. Time out processing
containing a time out is described as follows.

timer_=1000
WAIT (SW(192)==1) | timer_==0
IF timer_==0 THEN : GOTO *TMOUT : END_IF

In order to refer to or modify timer_ variable from an external task, the TIMER() function is
effective.

Character string processing

Main commands
string$ Attaching $ at the end makes it a character string variable.
FORMAT,STR$,HEX$,CHR$ Format, DEC → character string,
 HEX → character string, CODE → character string
VAL,ASC,HEX Character string → numerical value conversion
STRCPY,PTR$ Copying
SERCH,SERCH$ Search
ptr_ Character string pointer

[Examples of command use]
1）Character string variables, combining

 A$="" : B$="" : C$="" /* Character string variable initialization
 A$="2007/" /* Character string substitution
 B$="11/15" /* Character string substitution
 C$=A$+B$ /* Character string combining
 PRINT C$ /* Display

*Result
2007/11/15

4-3

2) DEC → character string conversion (without format)
 D=20071115 /* Numerical value
 FORMAT "" /* Character string format initialization
 D$=STR$(D) /* Numerical value → character string conversion
 PRINT D$ /* Display

*Result
20071115

3) DEC→charactor string conversion (with format)
 D=11152007 /* Numerical value

 FORMAT "00/00th,0000" /* Character string format specification
 D$=STR$(D) /* Numerical value → character string conversion
 PRINT D$ /* Display

*Result
11/15th,2007

4) Character string conversion (with format)
 D=&H20071115 /* Numerical value (hexadecimal)
 FORMAT "0000/00/00" /* Character string format specification
 D$=HEX$(D) /* Hexadecimal value → character string conversion
 PRINT D$ /* Display

*Result
2007/11/15

5) Example of reading the internal clock
 FORMAT "0000/00/00 " /* Set the character string format
 DT$=HEX$(DATE(0)) /* Obtain a date character string
 FORMAT "00:00:00" /* Set a character string format
 TM$=HEX$(TIME(0)) /* Obtain the time character string
 PRINT DT$ TM$

*Result
2007/11/15 12:34:19

 6) CODE→character conversion
 A$=CHR$(&H41)+CHR$(&H43)+CHR$(&H43)+CHR$(&H45)+CHR$(&H4C)
 PR A$

*Result
ACCEL

7) Character string → DEC conversion
 A$="NOV15,2007"
 A=VAL(A$) /* Obtain the first numerical character string.
 PRINT A

*Result
15

8) Character string → CODE conversion
 A$="NOV15,2007"
 A=ASC(A$) /* Obtain the code for the first character.
 PRX A

4-4

*Result
0000004E /* &H4E='N'

9) Character string → HEX conversion
 A$="E07F" /* Character string readable as a hexadecimal number
 A=HEX(A$) /* Convert into a numerical value.
 PRX A /* Hexadecimal display
 PRINT A /* Decimal display

*Result
0000E07F
57471

10) Character string copying (copying as is)
 A$="NOV15,2007"
 B$=A$ /* Copy A$ to B$
 PR B$

* Result
NOV15,2007

11) Character string partial copying
 A$="NOV15,2007"
 STRCPY A$ B$ 3 /* Copy character No. 3 and later of A$ to B$ (counting the first character of A$ as 0.)
 PR B$

*Result
15,2007

12) Partial copying using a pointer
 FORMAT "" /*Clear the character string format setting.
 TT$=HEX$(TIME(0)) /* Obtain the current time.
 ptr_=TT$ /* Obtain the character string position.
 ptr_=ptr_+2 /* Advance the pointer by 2.
 HH$=PTR$(2) /* Cut out two characters at the pointer position and substitute it for HH$.
 ptr_=ptr_+2
 MM$=PTR$(2) /* Cut out two characters at the pointer position and substitute it for MM$.
 ptr_=ptr_+2
 SS$=PTR$(2) /* Cut out two characters at the pointer position and substitute it for SS$.
 CL$=HH$+":"+MM$+":"+SS$ /* Combine character strings.
 PR TT$ "->" CL$ /* TT$: Original character string, CL$: Synthesized character string.

*Result
00090835 -> 09:08:35

13) Search and partial copying
 a$="DATA X=AB0.4 Y=CD45 TEMP=DE55" /* Original character string
 SERCH a$ "X=" /* Search for “X=” in a$. The result enters to the pointer ptr_.
 b$=PTR$(5) /* Copy five characters starting at the ptr_ position to b$.
 ptr_=SERCH$("Y=") /* Search for “Y=” frm the ptr_ position and enter the result to ptr_.
 c$=PTR$(5) /* Copy five characters starting at the ptr_ position to c$.
 ptr_=SERCH$("TEMP=") /* Search for “TEMP=” frm the ptr_ position and enter the result to ptr_.
 d$=PTR$(4) /* Copy four characters starting at the ptr_ position to d$.
 PRINT b$ c$ d$

*Result
AB0.4 CD45 DE55

4-5

4-2 Touch Panel Connection

MEWNET protocol

 In MPC-2000, a touch panel or display compatible with MEWNET can be connected to
each serial port.
 Although MPC-2000 provides only an RS-232 serial port, expanded serial board
MRS-MCOM also provides an RS-422. The protocol is MEWNET only. MEWNET is a memory
link protocol for FA of Matsushita Electric Works.
 Although MEWNET protocol provides a very large number of procedures corresponding to
the complicated contact functions of PLC, MPC-2000 assumes the memory area as the DT
attribute and the I/O area as the R attribute and deals with only protocols related to these
two. Because panel programs containing the other attributes and other company’s panels
claimed to be compatible with MEWNET may not be connectable, checking the connection in
advance is desirable. To date, the following touch panels are confirmed to be connectable.

Panasonic Electric Works GT series (such as AIGT0030 and AIGT2032)
Digital GP-2000/3000 series (such as AGP-3300)
Mitsubishi GOT series (GT-10XX)
Keyence VT3 series (VT3-Q5M, VT3-W4T)
SAMKOON SA series (SA-3.5A)

 In order to start MEWNET, the following one line should be added to the top of a program.
Once this command is executed, a touch panel is linked regardless of the program execution
state.
Once linked, data are shared, and displaying data on the touch panel or setting data from
the touch panel can be performed without being conscious of communication.

MEWNET 38400 1

The first argument 38400 indicates the baud rate. From the respect of reaction speed,
38400 is recommended.
The next argument is the CH number of the serial port used. (Character format is 8 bit nonparity.)

Touch panel communication is assigned one task, determined by the serial port CH number.
In addition, some touch panels have parity fixed to odd, in which case one of the following
constants specifying the character format is added.

bit7 odd parity
bit7 even parity
bit8 odd parity
bit8 even parity

Below is a case of 3800 bps bit7 odd parity.
MEWNET 38400 1 B7O

Task number used becomes 32 − CH number.
Therefore, if CH1 is specified (CH1 provided by MPC-2000 and 2100), Task 31 is assigned to
touch panel communication. In this case, if Task 31 is used or carelessly quit in a program,
touch panel communication is damaged.

Memory allocation

Memory sharing with a touch panel is performed by the MPC side using a reserved array
MBK(). MBK is a word-type array, and 8192 of them are secured. Among them, 0~7835 are
used as word data. In 7836~7899 the system constantly writes program numbers executed
by each task.
The area of MBK(0)~MBK(7899) corresponds to DT0~DT7899 in the touch panel.

4-6

[Usage example]
 IF MBK(100)==10 THEN
 MBK(200)=1000

7900~7999 is made an I/O area, which can be operated with ON/OFF command.
ON 70000 → Turn Bank 0 Port 0 ON.
OFF 70115 → Turn Bank 0 Port 15 OFF.
In the touch panel this area becomes an I/O area specified with “R”.
	 	

[MBK area]
0～7835

Word data
(corresponding to DT)

In general, 0~9 is used as a system area.
Modifying: S-MBK n m or MBK(m)=n
Referring: MK(m)

7868～7899(Wrd)
7836～7899(Lng)

Program number

Program numbers are updated in real time, and can
be referred to and displayed in the touch panel side.
Rem) Executing S_MBK LONG_PRG converts into the
Lng type.

7900～7999

I/O area
(Corresponding to R)

Area of 16 bits each (XX) in 0~100 bank (YY).
ON 7YYXX,OFF 7YYXX
OUT 1000 7YY00~Lng
SW(7YYXX),IN(7YY00)

Touch panel connection examples

 ■ Example of connecting with Panasonic Electric Work GT11

 MPC-2000/2100	
J1	(CH1)	

MEWNET	38400	
(MEWNET	38400	1)	

GT11	
COM(RS232C)	

MPC-2100	
J5	(CH2)	

MEWNET	38400	2	

	PLC	model	
“Panasonic	Electric	Work	MEWNET-FP	series”	
	
	Example	of	communication	setting	
COM	Port	
Transfer	speed:	 38400	
Data	length:	 8	
Stop	bit:	 1	
Parity:	 Disabled	
	
Communication	error	processing	
Retries:	 0	times	0	seconds	
Display	error	code:	Yes	(not	retained)	
	
Send	delay	time:	0	ms

GT11	
COM(RS232C)	

SG	1	
TXD	2	
RXD	3	
SG	4	
MAN	5	
P5	6	
SG	7	

TXD1	8	
RXD1	9	
FG	10	

FG	1	
TXD2	2	 	
RXD2	3	
(RTS)	4	

5	 	 	
6	 	 	

SG	7	
8	 	
9	 	

DTR	10	

RD	
SD	
	
	
	
SG	

RD	
SD	
	
	
	
SG	
	

MPC	declares	the	
communication	speed	
and	port	using	MEWNET	
commands.	
(Exclusive	use	with	
general-use	RS-232C.)	

4-7

 ■ Example of screen design in Panasonic Electric Works GT11

 [Schematic view] [Actual photograph]

 * Colors in the photo are altered.

[Details of arranged parts]

Display Part Basic setting MPC command
example

X+ Switch part Momentary R200 SW(72000)

IN
(72000˜Wrd)
(2 byte read)

X- Switch part Momentary R201 SW(72001)
Y+ Switch part Momentary R202 SW(72002)
Y- Switch part Momentary R203 SW(72003)
Z+ Switch part Momentary R204 SW(72004)
Z- Switch part Momentary R205 SW(72005)
HOME Switch part Momentary R206 SW(72006)
CHACK Switch part Momentary R207 SW(72007)
JUMP Switch part Momentary R208 SW(72008)
TEACH Switch part Momentary R209 SW(72009)
AL Switch part Momentary R20A SW(72010)
1 Functional switch part Value set output destination DT101 value 1
10 Functional switch part Value set output destination DT101 value 10
100 Functional switch part Value set output destination DT101 value 100
*** Data part Reference device DT101 MBK(101)

[Example program]
 MEWNET 38400 /* Use RS-232C CH1

 DO /* Loop to wait for SW to be pressed
 GT=IN(72000~Wrd) /* Read in 2 byte
 IF GT<>0 THEN : BREAK : END_IF /* Exit the loop when any key is pressed.
 SWAP
 LOOP

 SELECT_CASE GT
 CASE &H01 : AX=X_A : MD=1 : GOSUB *JOG_MV /* X+ SW
 CASE &H02 : AX=X_A : MD=-1 : GOSUB *JOG_MV /* X- SW
 CASE &H04 : AX=Y_A : MD=1 : GOSUB *JOG_MV /* Y+ SW
 CASE &H08 : AX=Y_A : MD=-1 : GOSUB *JOG_MV /* Y- SW
 CASE &H10 : AX=Z_A : MD=1 : GOSUB *JOG_MV /* Z+ SW
 CASE &H20 : AX=Z_A : MD=-1 : GOSUB *JOG_MV /* Z- SW
 CASE &H40 : GOSUB *JOG_HOME /* HOME SW
 CASE &H80 : GOSUB *JOG_CHACK /* CHACK SW
 CASE &H100 : GOSUB *JOG_JUMP /* JUMP SW
 CASE &H200 : GOSUB *JOG_TEACH /* TEACH SW
 CASE &H400 : GOSUB *ALIGN /* AL SW
 CASE_ELSE : PRINT "?"
 END_SELECT
 WAIT IN(72000~Wrd)==0

4-8

4-3 Time Management
MPC-2000,2100 and 2200 have a built-in RTC, which provides the date and time. The built-
in RTC is RTC-7301 manufactured by Epson Toyocom and has a monthly error of about 1
minute. MPC-1000 and N816 do not have this function.

Setting

Using the calendar IC requires an initial setting. SET_RTC command is used for the setting.
SET_RTC 2009 4 1 ...Set to April 1, 2009
SET_RTC 12 2 0 ...Set to 12 hours 2 minutes 0 second.

Checking the set date is performed with date(0) and time(0) functions.
#prx date(0)
20090401
#prx time(0)
00120204

Time detection

In order to detect a specified date and time, numerical value comparisons are performed as
follows. They are specified as hexadecimal constants.

IF TIME(0)==&H130500 THEN (13 hours 5 minutes and 0 second)
IF DATE(0)==&H20090401 THEN (April 1, 2009)

In the following example, 5 seconds and 15 seconds are detected every minute. By enabling
only necessary digits, complicated time detection such as every hour and every day are possible.

DO
 WAIT &HFF&TIME(0)==&h0005
 PRINT "time_05"
 WAIT &HFF&TIME(0)==&h0015
 PRINT "time_15"
LOOP

Date and time character strings

As data and time character strings, DATE$() and TIME$() are used. Numerical values 0~2
specify different formats.

10 FORMAT "00000000"
20 a$=DATE$(0)
30 FORMAT "000000"
40 a$=a$+TIME$(0)
60 PRINT a$
#run

 2009090900141849
#pr time$(1)
 14:19:02
#pr date$(1)
 9/ 9/2009
#

4-4 Axis Control
Pulse-generation boards, MPG-2541 and MPG-2314 are available. MPG-2541 is for simple
positioning, not including interpolation or stopping. On the other hand, MPG-2314 can
deal with complicated processes such as linear/circular interpolation and sensor stop. Up

4-9

to 10 MPG-2314 boards and up to 8 MPG-2541 boards can be used in expansion, and the
software can accommodate 18 boards × 4 axes. (Because the rack has up to 16 slots, the
number of slots is limited.)

PG assignment

Which PG to use is set with PG command. MPG-2314 deals with DSW values of 0~9.
MPG-2541 uses DSW values with 10 added. (PG 10 for example.)

Acceleration and speed

ACCEL, FEED, and SPEED commands are available.
ACCEL determines the maximum speed, minimum speed, and acceleration. Presence/
absence of an S-curve acceleration/deceleration is also specified here. FEED command
specifies a speed by providing an argument of 1~100 (%) in terms of m % of the maximum
speed. On the other hand, SPEED command specifies it in pps. It specifies a speed as m
pps withint the range of the maximum speed determined by ACCEL. (The resolution becomes
1/8192 pps of the maximum speed.)

Pulse generation commands

The following commands are available for actual pulse generation. They are selectively used
according to the purpose.

Command Purpose Description

MOVS Positioning Acceleration/deceleration rate pulse generation, absolute position
specification, without interpolation.

RMVS Positioning Acceleration/deceleration rate pulse generation, relative posit ion
specification, without interpolation.

MOVL XY stage, etc. Acceleration/deceleration rate pulse generation, absolute position
specification, with linear interpolation.

RMVL XY stage, etc. Acceleration/deceleration rate pulse generation, absolute position
specification, with linear interpolation.

MOVT Painting robot NC Track control continuous pulse generation, absolute position specification,
circular/linear interpolation

RMVT Painting robot NC Track control continuous pulse generation, absolute position specification,
circular/linear interpolation

RMVC Spindle, etc. Infinite pulse generation

STOP General use Command to stop pulse.

HOME Auxiliary command Origin-return macro command

Setting and errors

Positioning provides an interlock which is necessary for detecting various kinds of abnormal
states and safety. Although MPG-2541 provides only limit input, MPG-2314 provides servo
driver error input and detection stop input other than limit input.
Command/function Purpose Description

INCHK Maintenance MPG inputs, display
INSET Error input setting LMT logic setting, ALM
STOP Stop condition input Defining special origin return and stop condition
PGE() Stop cause – read out After PG stop:EMG,ALM,LMTn,LMTp|IN3,IN2,IN1,IN0
LMT() Error cause read out Constant reference:EMG,ALM,LMTp,LMTn,SLMTp,SLMTn
HPT() IN0~3 input Reading out origin input, etc.
RR() Operation state Detecting if PG is in operation.

4-10

Initial setting * Sample program below were created by MPG-2314.

Major commands
 PG Select PG
 ACCEL,FEED Set the speed
 INSET Set the input
Pulses cannot be normally generated by simply mounting MPG-2314. Initial setting is
required.First, MPG is assigned to a task using PG command. Next, initial setting is made
with ACCEL, etc.Although direct commands may also be used, they should eventually be
reflected onto the program.

[Setting example]
PG 0 /* MPG-2314 board selection. MPG-2314 is address-set using DSW1.
ACCEL ALL_A 30000 /* Setting the maximum speed and acceleration/deceleration.
FEED ALL_A 100 /* Setting the speed used as 100 %.
INSET ALL_A ALM_ON|INP_OFF /* Setting the input function. Alarm is enabled at ON, and INPOS is enabled at OFF.
CLRPOS /* Current point is 0-cleared.

Operation check in the teaching mode

Major commands:
 PG PG selection
 T(TEACH) Teaching mode
 PLS List the point data
The easiest way to check pulse output is the teaching mode. Teaching mode can be entered
by typing T<Enter> in FTMW screen.

 PG=[0]	 	 X=1600	Y=800	U=0	Z=-1600	 	 dx=200	dy=200	du=200	dz=200	

Current	PG	address	 Axis	coordinate	values	 Displacement

Displacement (number of pulse outputs at a time) is switched using 0~3 keys. This value
can be changed with SET command.
 Initial value 0: 200 pulses / 1: 400 pulses / 2: 600 pulses / 3: 800 pulses

Individual axes operate with X, x, Y, y, U, u, Z, and z keys. P key is used for inputting a point
number. The point number to teach should be input. Pressing Q key exits the teaching mode.

Setting the maximum speed and acceleration/deceleration

Major commands:
 ACCEL Set the maximum speed, acceleration/deceleration, and minimum speed
 FEED Specify the speed

[Format]
ACCEL [axis] PPS [leng lo_pps]
axis: Axis selection reserved constant
PPS: Maximum speed
Leng: Number of pulses in the acceleration/deceleration region
Lo_pps: Startup speed (Minimum speed)

FEED [axis] n
[axis]: Axis specification reserved constant
N: Speed specification 100 (Maximum speed) ~ 0 (Minimum speed)

4-11

 Relationship between ACCEL and FEED

 FEED axis 100

FEED axis 0

PPS

leng
lo_pps

MPG-2314 input check

The input port of MPG-2314 can be checked using the INCHK command.
#PG 0 /*PG 0 assignment (described later)
#INCHK /* MPG input check
 MPG-2314
 X=+LMT:off-LMT:off ALM:off INP:off IN0:on IN1:off /* IN0= Origin LS is ON
 Y=+LMT:off-LMT:off ALM:off INP:off IN0:on IN1:off /* IN0= Origin LS is ON
 U=+LMT:off-LMT:off ALM:off INP:off IN0:off IN1:off
 Z=+LMT:off-LMT:off ALM:off INP:off IN0:off IN1:off
/* Stop scanning with any key.

Origin return

Major commands:
 SHOM Origin input setting
 HOME Origin return operation
 HPT Read in the origin input state

Each axis of XY03 has one limit switch installed, which is connected to the origin input of
MPG-2314.

XCW	 	

YCW	 	

XCCW	 	

YIN0	(Y	origin)	

genntenn

XIN0	(X	origin)	

YCCW	 	

ZCW	 	

ZCCW	 	

ZUN0	(Z	origin)	

[Subroutine examples]
1) Example of Z single axis origin return subroutine

*Z_HOME
 PG 0
 ACCEL Z_A 10000 100 100
 /* Speed setting. Maximu speed 10 KPPS, acceleration/deceleration region 100 pulses, minimum speed 100 PPS
 IF HPT(ZIN0)<>0 THEN /* If XIN0 is ON, move backwards.
 RMVS Z_A -5000 /* Move by 1000 pulses in the CCW direction.
 WAIT RR(Z_A)==0 /* Wait for the operation to be complete.
 END_IF
 SHOM Z_A IN0_ON /* Origin return setting. Move until ZIN0 turns ON.
 TMOUT 10000 /* Time out at 10 seconds.
 HOME 0 0 0 50000 /* 50K pulses in the Z-axis CW direction.
 WAIT RR(Z_A)==0 /* Wait for the operation to be complete.
 IF Z(0)<>0 THEN /* If the coordinate is not 0 after the operation, time out.
 PRINT "Z TIME OUT"
 ELSE /* If the coordinate is 0 after the operation, HOME completion.
 PRINT "Z HOME"
 END_IF
 RETURN

4-12

2) Example of XY 2-axis simultaneous origin return subroutine
*XY_HOME
 PG 0
 ACCEL X_A|Y_A 10000 100 100 /* Speed
 FEED X_A|Y_A 100
 RMVL 5000 5000 0 0 /* X, Y forced retreat to CW (LS check omitted)
 WAIT RR(X_A|Y_A)==0 /* Wait for the operation to be complete.
 SHOM X_A|Y_A IN0_ON /* Operate X and Y axes until their IN0 turn ON.
 TMOUT 10000 /* Time out at 10 seconds
 HOME -100000 -100000 0 0 /* XY-axis simultaneous operation
 WAIT RR(X_A|Y_A)==0 /* Wait for the operation to be complete.
 RMVL 2000 2000 0 0 /* Offset according to necessity (Electric origin).
 WAIT RR(X_A|Y_A)==0
 STPS X_A|Y_A 0 /* Current positions of X and Y axes are set to ‘0’.
 PRINT "XY HOME"
 RETURN

3) Main routine calling a subroutine
 GOSUB *Z_HOME /* Z axis is returned to the origin (lifted) first to prevent interference between hand and work.
 GOSUB *XY_HOME
 END

 * These subroutines are also used in samples described later.

Absolute coordinate movement

Major commands
 MOVL Linear-interpolation move
 MOVS Single-axis move

1) Movement is performed with coordinates specified with constants or variables. MOVL
performs linear interpolation.

	 	 GOSUB	*Z_HOME	 	 	 	 /*	Origin	return	subroutine	described	earlier	
	 	 GOSUB	*XY_HOME	
	 	 	
	 	 ACCEL	ALL_A	30000	3000	1000	 	 /*	Set	speed	and	acceleration/deceleration.	
	 	 FEED	ALL_A	100	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 /*	Operate	at	the	maximum	speed.	
	 	 MOVL	40000	40000	VOID	VOID	 	 /*	XY-axis	absolute	coordinate	movement	
	 	 WAIT	RR(ALL_A)==0	 	 	 	 	 	 	 	 	 	 	 /*	Wait	for	the	operation	to	be	complete.	
	
	 	 END	40000	

40000	

X	

Y	

0	 0	

2) Movement is performed with taught points specified. The points can be set in the
teaching mode or a program. Point numbers can also be specified with variables.

P(1)	

	 	 GOSUB	*Z_HOME	
	 	 GOSUB	*XY_HOME	
	
	 	 ACCEL	ALL_A	30000	3000	1000	/*	Set	speed	and	acceleration/deceleration.	
	 	 FEED	ALL_A	100	 	 	 	 	 	 	 	 	 	 	 	 	 /*	Operate	at	the	maximum	speed.	
	 	 MOVL	P(1)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 /*	Linear-interpolation	move	to	point	P(1).	
	 	 WAIT	RR(ALL_A)==0	 	 	 	 	 	 	 	 	 /*	Wait	for	the	operation	to	be	complete.	
	 	 PNO=2	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 /*	Variable	specification	
	 	 MOVL	P(PNO)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 /*	Linear-interpolation	move	to	point	P(2).	
	 	 WAIT	RR(ALL_A)==0	
	
	 	 END	

P(2)	

X	

Y	

0	

0	

4-13

3) Although reached points are the same as in 1), MOVS does not perform linear
interpolation. It can apply to preventing the vibration of a mechanism using a stepping motor
and setting different speeds among different axes in a mechanism combining step and servo
for example.

	 	 GOSUB	*Z_HOME	
	 	 GOSUB	*XY_HOME	
	
	 	 ACCEL	X_A	15000	2000	1000	 	 /*	Set	X-axis	speed	and	acceleration/deceleration.	
	 	 ACCEL	Y_A	30000	3000	1000	 	 /*	Set	Y-axis	speed	and	acceleration/deceleration.	
	 	 FEED	ALL_A	100	 	 	 	 	 	 	 	 	 	 	 	 	 /*	Operate	all	axes	at	the	maximum	speed.	
	 	 MOVS	40000	40000	VOID	VOID	/*	Single-axis	operation	for	X	and	Y.	
	 	 WAIT	RR(ALL_A)==0	
	
	 	 END	40000	

40000	

X	

Y	

0	
0	

Relative coordinate movement

Major commands
 RMVL Linear-interpolation move
 RMVS Single-axis move

1) Movement is performed with coordinates specified with constants or variables.
RMVL performs linear interpolation.

40000	

40000	

X	

Y	

0	
0	

	 	 GOSUB	*Z_HOME	
	 	 GOSUB	*XY_HOME	
	
	 	 ALL_A	30000	3000	1000	 /*	Set	speed	and	acceleration/deceleration.	
	 	 FEED	ACCEL	ALL_A	100	 /*	Operate	at	the	maximum	speed.	
	
	 	 FOR	I=1	TO	4	 	 	 	 	 	 	 	 	 	 	 	 	 	 	/*	Repeat	4	times.	
	 	 	 	 RMVL	10000	10000	0	0	 	 	 	 /*	XY	linear-interpolation	move	 	
	 	 	 	 WAIT	RR(ALL_A)==0	
	 	 NEXT	I	
	
	 	 END	

10000	

10000	

2) Although reached points are the same as in 1), RMVS does not perform linear
interpolation.

40000	

40000	

X	

Y	

0	
0	

	 	 GOSUB	*Z_HOME	
	 	 GOSUB	*XY_HOME	
	
	 	 ACCEL	X_A	15000	2000	1000		 	 	 /*	Set	speed	and	acceleration/deceleration.	
	 	 ACCEL	Y_A	30000	3000	1000		 	 	 /*	Set	speed	and	acceleration/deceleration.	
	 	 FEED	ALL_A	100	 	 	 	 	 	 	 	 	 	 	 	 	 	 /*	Operate	at	the	maximum	speed.	
	
	 	 FOR	I=1	TO	4	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 /*	Repeat	4	times.	
	 	 	 	 RMVS	10000	10000	0	0	 	 	 	 	 /*	XY	simple	move	
	 	 	 	 WAIT	RR(ALL_A)==0	
	 	 NEXT	I	
	
	 	 END	

10000	

10000	

4-14

Palletization

Major commands
 PALLET Pallet declaration
 PL Work points

Used for moving between pallets. A work point PL on a pallet is calculated from three corner
points and the numbers of rows and columns.

 PALLET 1 P(1) P(2) P(3) 2 3 /* Pallet declaration
 PALLET 2 P(4) P(5) P(6) 2 3

 GOSUB *Z_HOME
 GOSUB *XY_HOME
 ACCEL ALL_A 30000 3000 1000 /* Set speed and acceleration/deceleration.
 FEED ALL_A 100 /* Operate at the maximum speed.

 FOR M=1 TO 6 /*Points in each PALLET*
 JUMP PL(1;M) /* Jump to point M of PALLET 1.
 WAIT RR(ALL_A)==0
 ON 14 /* Close chuck.
 TIME 200
 JUMP PL(2;M) /* Jump to point M on PALLET 2.
 WAIT RR(ALL_A)==0
 OFF 14 /* Open chuch.
 NEXT M

 END

When m of PL(n;m) is negative, ZIGZAG mode is entered. Moving distance between column
becomes shorter.

FOR M=-1 TO -6 STEP -1 /* Line with * above. Set the arguments negative.

 * If four points are specified for PALLET, a distorted pallet can be dealt with.

4-15

Stopping

Major commands
 STOP Stop pulse.
 INSET Set MPG-2314 input.

 ■ Stopping by software
Input is monitored after a move is started, and once a switch turns on, STOP command is
issued.

 GOSUB *Z_HOME
 GOSUB *XY_HOME
 ACCEL ALL_A 30000 3000 1000 /* Set speed and acceleration/deceleration.
 FEED ALL_A 100 /* Operate at the maximum speed.

 MOVL 40000 40000 VOID VOID /* XY linear interpolation
 WAIT SW(194)==1 /* Wait for red SW to turn on.
 STOP ALL_A STP_I /* Abrupt stop. If STP_D, slow down to stop.
 WAIT RR(ALL_A)==0

 END

 ■ Stopping by hardware
Described below is stopping by utilizing an alarm input of MPG-2314. Stop conditions are
set before moving. If X-axis alarm (J6 connector pin 13) or Y-axis alarm (pin 14 of the same)
turns on while moving, both axes stop immediately.

 GOSUB *Z_HOME
 GOSUB *XY_HOME
 ACCEL ALL_A 10000 3000 1000 /* Set speed and acceleration/deceleration.
 FEED ALL_A 100 /* Operate at the maximum speed.

 INSET X_A|Y_A ALM_ON /* Set alarm input.

 MOVL 40000 40000 VOID VOID /* XY linear interpolation
 WAIT RR(ALL_A)==0

 END

* INCHK command for checking the MPG-2314 input of ALM and the like.

Encoder and counter input

MPG-2314 provides 2-axis encoder input by default. Two-phase or Up/Down can be selected
by a command. (Two axes can be added as an option.)

Major commands
 INSET X_A PHASE1 Two-phase encoder input, multiplication 1.
 INSET X_A UP_DWN Switch to Up/Down input. (Default is two-phase.)
 INSET X_A CMP_CNT Mode to compare COMP register and the count value.
 CLRPOS –1 Clear X, Y, U, and Z counters.
 STPS X_C n Set X counter to n.
 X(-1) Return the X counter value.
 X(-2,1) Return the X counter value and clear the counter.
 CMP_C(X_A) Return the result of comparing COMP register and X counter.

4-16

[Connection example (X counter)]

When the rotary encoder is operated, it turns the output on/off at every 100 counts.
PG 0
INSET PHASE1 /* 1000 counts per 1 rotation with multiplication 1.
CLRPOS -1 /* Clear the counter.
OUT 0 0
DO
 NOW_XC=X(-1) /* Read in the X counter value.
 IF (NOW_XC%100)==0 THEN /* Divide by 100.
 OUT @SW(0) 0 /* Output inversion on/off
 PRINT NOW_XC SW(0) /* Display
 WAIT NOW_XC<>X(-1)
 END_IF
LOOP

Execution result
 0 1
 100 0
 200 1
 200 0
 100 1
 0 0
 -100 1
(For other sample programs, see Application Note an2k-009.)

Concerning MPC-1000 pulse generation function

MPC-1000 has two sub CPUs built-in, each of which can be used as a pulse generator.
* This PG function requires about 0.1~0.2 seconds for command communication.
* Because this PG function uses the internal oscillator of PIC, the speed specification has

about +/-2 % errors.
* The pulse width of pulse generation with acceleration/deceleration is fixed to 15 µsec.

[Occupied ports]
The pulse generators are named as PGA and PGB and occupy the following ports.

Output ports Input ports

PGA ON 12 (CW pulse)
ON 13 (CCW pulse)

SW(192+12) READY
SW(192+13) for communication

PGB ON 14 (CW pulse)
ON 15 (CCW pulse)

SW(192+14) READY
SW(192+15) for communication

4-17

[Enabling PG]
In order to enable PGA or PGB, execute the following.

ON PGA
ON PGB

Also, for disabling, execute the following.
OFF PGA
OFF PGB

In a disabled state, I/O are not occupied and can be used as I/O for control. In addition, ON/
OFF also function as software reset of PG. When stopping pulse generation, OFF PGA and OFF
PGB should be executed for each and an OFF time of 10 msec or longer should be secured.

[PG commands] PGX stands for either PGA or PGB.
Function Command Range Note READY

Pulse method PGX "D" n 0 or 1 0: Default 2 PLS
1: Direction indication

PWM PGX "W" n 40~970 Also usable as DA.
PPS specified pulse generation PGX "G" pps 20~9000
Setting the pulse rate PGX "S" pps 20~9000
Pulse number specified pulse
generation PGX "P" count -8000000~

8000000 ○
Acceleration/deceleration
table generation PGX "A" pps 500~12000 ○
Speed selection PGX "F" n 10~0 n*10 %
Acceleration/deceleration
pulse generation, relative PGX "R" count -8000000~

8000000 ○
Acceleration/deceleration
pulse generation, coordinate PGX "M" count -8000000~

8000000 ○

Clearing the current position PGX "H" count Setting the current
position.

Obtaining the current position PGX "C" V_PGA for PGA

V_PGB for PGBObtaining the version PGX "V" 20091105
or later

* "○" mark in the READY column indicates a command which requires waiting for the
execution completion such as specified number of pulse generation.
[Usage 1] As pulse generation

*PGAPGB
 TIME 300
 ON PGA PGB
 WAIT SW(192+12)==1
 PGA "V" : PRINT V_PGA
 DO
 FOR i=20 TO 6020 STEP 1000
 PGA "G" i
 TIME 100
 NEXT
 FOR i=6020 TO 20 STEP -1000
 PGA "G" 0-i
 TIME 100
 NEXT
 TIME 100
 PGA "G" 0
 PGA "S" 2000
 PGA "P" 1600
 WAIT SW(192+12)
 PGA "P" -1600
 WAIT SW(192+12)

Enabling PG
Confirming the enabling
Obtaining and displaying the version

Pulse rate is changed from 20 to 6020.
(CW)

Pulse rate is changed from 6020 to 20.
(CCW with a negative value)

Stop G command.
Set a pulse rate.
Generating 1600 pulses, CW (no acceleration/deceleration)

READY=0 during pulse generation
Generating 1600 pulses, CCW (without acceleration/deceleration)

4-18

[Usage 2] As position-control pulse generation
 PGA "A" 9000
 WAIT SW(192+12)
 PGA "H" 0
‘
 FOR j_=5 TO 10
 PGA "F" j_
 FOR i_=1 TO 10
 PGA "R" 800
 WAIT SW(192+12)
 NEXT
 PGA "M" 0
 NEXT

Set the acceleration/deceleration table to 9000 pps/s
Wait for the completion of table generation
Specify the current position.

Specify the speed.

Relative pulse generation

Move to the 0 position. Coordinate move

[Command explanations] PGX stands for either PGA or PGB.

Pulse method PGX “D” n Two pulse method of CW and CCW or direction indication is specified.
To change to the direction indication, PGX “D” 1 should be executed.

PWM PGX “W” n PWM pulse generation, generating pulses in the CW side only. By
default, it defines n µsec ON-time at 1 kpps pulse rate. When
changing the pulse rate, PGX “S” pps should be executed first,
then PGX “W” n. To stop it, OFF PGA (PGB) or PGX “W” 0 should be
executed.

PPS specified pulse
generation

PGX “G” pps Constant speed pulse generation, generating pulses at a specified
rate. It becomes CW with a positive value, and CCW with a negative
value. After it is started, the speed can be changed. To stop it, OFF
PGA (PGB) or PGX “G” 0 should be executed.

Pulse rate setting PGX “S” pps Pulse rates of PWM and pulse number specified pulse generation
are determined.

Pulse number
specified pulse
generation

PGX “P” count Constant-speed, specified pulse generation, generating pulses in
the CW direction with a positive value and the CCW direction with a
negative value.

Acceleration/
deceleration table
generation

PGX “A” pps Generates the speed table for pulse generation with acceleration/
deceleration. Acceleration distance is fixed by 1/10 of the specified
pulse rate. Acceleration/deceleration speed is fixed in flash ROM.
The number of rewriting flash ROM is deemed to be within 100
thousand times, which should be watched for. (If the arguments are
the same, no rewriting is performed.)

Speed selection PGX “F” n The speed specified with A command is divided into ten stages, and
n/10 speed specification I performed.
Although modifying the acceleration/deceleration table takes time,
speed change which does not take time.

Acceleration/
deceleration pulse
generation, relative

PGX “R” count Pulse generation with acceleration/deceleration, which is coordinate
controlled and can be used along with M command and C command.

Acceleration/
deceleration
pulse generation,
coordinate

PGX “M” count Pulse generation with acceleration/deceleration, which generates
the differential pulse between the current position and the specified
position. It is coordinate controlled and can be used along with R
command and C command.

Clearing the current
position

PGX “H” count Current position specification. Setting count to 0 makes it the origin.

Obtaining the
current position

PGX “C” Results are returned to reserved variables V_PGA and V_PGB for
PGA and PGB, respectively.

Obtaining the
version

PGX “V” Results are returned to reserved variables V_PGA and V_PGB for
PGA and PGB, respectively.

4-19

4-5 Data Communication

RS-232/RS-485

MPC-2000 can handle 10-CH serial communication. Although the CPU board alone can only
handle RS-232C, if MRS-MCOM is used, RS-422 and RS-485 communication can also be
handled. Sufficient receiving communication interrupt buffer of 256 bytes is provided for
each CH. * MPC-1000 can use CH1 as RS-485.
1) Configuration
For configuration, CNFG command is used as CNFG# 1 “38400b8pns1NONE” for example.
It is compatible with various kinds of formats from 1200 bps to 38400 bps. For conducting
RS-485 communication, the following should be executed.

CNFG# 5 RS485 "38400b8pns1NONE"

By providing a reserved constant RS485 as an argument, the communication direction can
be automatically switched.

2) Sending
PRINT# command is used. Character strings should basically be used in a PRINT# statement.
Although variables can also be used, the format cannot be regulated. Although “\n” (LF), “\r”
(CR), and “\t” (TAB) may be used in character strings, CHR$() should be used for other control
characters.

PRINT# CHR$(1) "DATA" CHR$(3)

3) Receiving
INPUT# command is used. INPUT# statement can take only character strings as its
arguments. After receiving them as character strings, the content can be analyzed using VAL
function, GET_VAL and SERCH commands, and the like to obtain data.

4) Options
In a INPUT# or PRINT# statement, the number of received characters, time-out time,
delimiter, and code may also be specified. In addition, COMPOWAY and STR_LEN are
provided as special options. Although COMPOWAY is the protocol of a basic procedure
regulated by OMRON, automatic sending and receiving of this format are supported. SRT_
LEN is used for sending a character string including a null code.

RS-232C device connection example

Major commands
 CNFG# Communication configuration
 PRINT# Output
 INPUT# Input
[Example of extracting numerical value data from a received character string]

 /* To execute this sample, TXD1 and RXD1 of CH1 should be short-circuited in a loop-back.
 CNFG# 1 "9600b8pns1NONE" /*Communication port initialization
 FOR I=0 TO 20 STEP 2
 FORMAT "ABC0.0DEF\n" /* Character string format
 SND$=STR$(I) /* Creating a character string to be sent
 PRINT# 1 SND$ /*Sending
 INPUT# 1 RCV$ /* Receiving
 PRINT RCV$ VAL(RCV$) VAL(0) /* Received character string, first numerical value, next numerical value.
 NEXT I

*Result
ABC0.0DEF 0 0
ABC0.2DEF 0 2
ABC0.4DEF 0 4

4-20

 [Example of connecting with an electronic weight scale]

 � Character string data sent out from an electronic weight scale
Example) WT,+000000.0 g<CR><LF>
WT: Header character. WT = stable state, US = unstable state, OL = overloaded.
+: Positive/negative sign. If negative, -.
000000.0: Data. Fixed to 8 characters, the decimal point may change the position or be absent.
g: Unit.
Sending cycle: Asynchronous discharge at a little fewer than four times per second.
No control from the MPC side

 � Sample program
 CNFG# 2 "2400b7pes1NONE" /* Initialization
 FORMAT ""
 TOTAL_CNT=0 /* Total count
 RETRY_CNT=0 /* Retry count
 DO
*RETRY
 INPUT# 2 EOL|10 TMOUT|2 RCV$ /* Receive up to LF. TMOUT 2 seconds.
 IF rse_<>0 THEN /* TMOUT processing. rse_ is a reserved variable, always in lower case.
 RETRY_CNT=RETRY_CNT+1
 PRINT "tmout retry" RETRY_CNT rse_
 GOTO *RETRY
 END_IF
 'PR RCV$
 ptr_=RCV$ /* Pointer for character string RCV$. ptr_ is a reserved variable, always in lower case.
 HEADER$=PTR$(2) /* Two characters at the top of RCV$ are copied to HEADER$.
 ptr_=RCV$+14 /* Advance the pointer by 14 characters.
 UNIT$=PTR$(1) /* One character from the pointer position is copied to UNIT$.
 SELECT_CASE HEADER$ /* Check the header.
 CASE "WT" : RESULT$="○"
 CASE "US" : RESULT$="□"
 CASE "OL" : RESULT$="×"
 CASE_ELSE /* Unexpected case
 PRINT "invalid header"
 GOTO *RETRY
 END_SELECT
 TOTAL_CNT=TOTAL_CNT+1
 WEIGHT1$=STR$(VAL(RCV$)) /* First numerical value in character string RCV$ (an integer in this case)
 SERCH RCV$ "." /*Decimal part may not exist depending on the weight scale setting (assumption).
 IF ptr_<>0 THEN /*If a searched character is found = If decimal part is found.
 WEIGHT2$=","+STR$(VAL(0)) /* Next numerical value in character string RCV$ (decimal part in this case)
 ELSE /* ↑ Due to a convenience for LCD display, “.” is replaced with “,”.
 WEIGHT2$="" /* If there is no decimal part, it is left empty.
 END_IF

4-21

 PRINT TOTAL_CNT RETRY_CNT RESULT$ WEIGHT1$ WEIGHT2$ UNIT$ /* FTMW display
 BUF$=HEADER$+WEIGHT1$+WEIGHT2$+"G " /* Lower-case English character cannot be displayed

on LCD.
 PR_LCD BUF$ /* MPC-2100 LCD display, example “WT117,3G”
 LOOP

Execution result (FTMW display)
 1 0 ○ 0 ,0 g
 2 0 ○ 0 ,0 g
 3 0 ○ 0 ,0 g
 4 0 ○ 0 ,0 g
 5 0 ○ 0 ,0 g
 6 0 ○ 0 ,0 g
 7 0 ○ 0 ,0 g
 8 0 ○ 0 ,0 g
 9 0 □ 51 ,3 g ← An item is placed on the weight scale.
 10 0 □ 111 ,9 g
 11 0 □ 117 ,0 g
 12 0 □ 117 ,2 g
 13 0 □ 117 ,3 g
 14 0 □ 117 ,3 g
 15 0 □ 117 ,3 g
 16 0 □ 117 ,3 g
 17 0 ○ 117 ,3 g
 18 0 ○ 117 ,3 g

 (see also: Application Note an2k-005.)

RS-485 device connection example

Major commands
 CNFG# Communication configuration (RS485 is specified as a parameter.)
 PRINT# Output
 INPUT# Input
 COMPOWAY OMRON CompoWay/F protocol macro command / Reserved constant

RS-485 is supported with J5 and J6 connectors of communication expansion board MRS-
MCOM. Because MRS-MCOM has a fail-safe circuit built-in, there is no need of an externally-
attached circuit other than a terminating resistor on the device side.

[Device connection example]
This is an example of multidrop-connecting OMRON digital controller E5EN and electronic
counter/timer H8GN.

* CompoWay/F is a unified communication protocol in the general-use serial communication of
OMRON Corp.

* Users should beware that the names of RS-485 signals A and B may be vice-versa depending on
the manufacturer.

4-22

The current value (temperature) in the variable area of OMRON digital controller E5EN is read in.
A character string is assembled according to the format of CompoWay/F protocol, BCC is
calculated, sent, BCC is calculated from received data, and a necessary part is cut out. The
character string processing is in the conventional (MPC-684) style.

 CNFG# 5 RS485 "9600b7pes2NONE" /* MRS-MCOM Ch5 RS485 configuration
 FORMAT "" /* No character string format
 SEND$=CHR$(2) /* STX
 SEND$=SEND$+"01" /* Note number
 SEND$=SEND$+"000" /* Sub-address, SID
 SEND$=SEND$+"0101" /* MRC,SRC
 SEND$=SEND$+"C0" /* Variable type
 SEND$=SEND$+"0000" /* Starting address
 SEND$=SEND$+"00" /* Bit position
 SEND$=SEND$+"0001" /* Number of elements
 SEND$=SEND$+CHR$(3) /* ETX
 PUT_BCC=0 /* BCC to be sent is calculated
 FOR I=1 TO LEN(SEND$)-1
 STRCPY SEND$ BUF$ I 1
 PUT_BCC=PUT_BCC^ASC(BUF$)&&HFF /* Exclusive logical sum
 NEXT I
 PRINT# 5 SEND$ CHR$(PUT_BCC) /* Sending
 DO
 INPUT# 5 CHR_C|1 BUF$ /*Receiving one character at a time
 IF ASC(BUF$)==&H02 THEN /* Waiting for STX (top of data)
 BREAK
 END_IF
 LOOP
 GET_STR$="" /* Received character variable (from the response frame STX to ETX)
 DO
 INPUT# 5 CHR_C|1 BUF$ /* Receiving one character at a time
 GET_STR$=GET_STR$+BUF$
 IF ASC(BUF$)==&H03 THEN /* If ETX is received, exit the LOOP.
 BREAK
 END_IF
 LOOP
 INPUT# 5 CHR_C|1 GET_BCC0$ /* Receiving one character (BCC data).
 GET_BCC0=ASC(GET_BCC0$) /* Received BCC data -> Numerical value
 GET_BCC1=0
 FOR I=0 TO LEN(GET_STR$)-1 /* BCC is calculated from the received character string.
 STRCPY GET_STR$ BUF$ I 1
 GET_BCC1=GET_BCC1^ASC(BUF$)&&HFF
 NEXT I
 IF GET_BCC0<>GET_BCC1 THEN
 PRINT "BCC ERROR"
 PRINT "Received BCC=" HEX$(GET_BCC0) " Calculated BCC=" HEX$(GET_BCC1)
 END
 END_IF
 STRCPY GET_STR$ NODE$ 0 2 /* Two characters from 0 constitute the node No.
 STRCPY GET_STR$ GET_TMP$ 14 8 /* Eight character from 14 constitute the temperature.

Using CompoWay/F communication macro commands simplifies assembling character
strings and eliminates the need of calculating BCC.

1) Sending procedure
 � Construct a text sent by COMPOWAY command.
 � If PRINT# command is given COMPOWAY option and executed, it sends a command frame
with STX, ETX, and BCC added.

4-23

2) Receiving procedure
 � If PRINT# command is given COMPOWAY option and executed, it receives a response form
and calculates BCC.

 � Elements are developed into variables from the response form by COMPOWAY command.

3) Example of communication by COMPOWAY macro command
 (using a pointer in character string processing)

CNFG# 5 RS485 "9600b7pes2NONE" /* Communication initialization
FORMAT "" /* No character string format
/* Elements of the text part of command frame are put in variables / character string variables.
node_no=1 /* Node No.
sub_adr=0 /* Sub-address
sid=0 /* SID

mrc_src$="0101" /* MRC,SRC
hensu_shu$="C0" /* Variable type
str_adr$="0000" /* Starting address
bit_ichi$="00" /* bit position
yoso_su$="0001" /* Number of element
setteichi$="" /* No set value
cmnd_txt$=mrc_src$+hensu_shu$+str_adr$+bit_ichi$+yoso_su$+setteichi$ /* Command text is created.

COMPOWAY node_no sub_adr sid cmnd_txt$ snd$ /* All from the node No. to command text are put
together in snd$.

PRINT# 5 COMPOWAY snd$ /* Command frame is sent.

INPUT# 5 COMPOWAY TMOUT|2 rcv$ /* Response frame is received in rcv$.
COMPOWAY rcv$ node_no sub_adr end_code res$ /* Character string of command text enters in res$.

/* Four characters from the 4th character of res$ counted from 0 constitute a response code.
ptr_=res$+4 /* ptr_ is a pointer reserved variable. It points to the 4th character of res$.
res_code=HEX(PTR$(4)) /* Copy four characters from the position of ptr_.

/* Eight characters from the 8th character of res$ counted from 0 constitute next data.
ptr_=res$+8 /* Pointer point to the 8th character of res$.
res_data$=PTR$(8) /*Copy eight characters from the position of ptr_.
PRINT res_code HEX(res_data$) /* Display the temperature.

Execution example
0 58 /* Response code = 0, temperature 58°C

(See also: Application Note an2k-004.)

USB memory

MPC-1000 and MRS-MCOM have a port dedicated to USB memory built-in, so that point
data and programs created by a PC can be read in. It can be applied for replacing data when
switching models for example.

Major commands:
 DIR
 USB_LOAD
 USB_SAVE
 USB_PLOAD
 USB_PSAVE
 USB_WRITE
 USB_READ

Obtaining the file list of USB memory
Reading a program from USB memory
Writing a program onto USB memory
Reading point data from USB memory
Writing point data to USB memory
Appending to a USB memory file
read one line from an usb file

4-24

 ■ Reading and writing a program
Applicable for maintenance such as updating and storing a program.
[Execution example]

#LIST 0 /* Current MPC program
10 DO
20 FOR I=0 TO 2
30 ON I
40 TIME 100
50 OFF I
60 TIME 100
70 NEXT I
80 LOOP
#DIR /* USB memory content = empty
 Drive A has no volume label.

File not found.
 0 files 0 bytes
 0 directories
A:>
#USB_SAVE "TEST.F2K" /* MPC program is written onto USB memory.
#DIR
 Drive A has no volume label.

2009/00/02 10:46 108 TEST.F2K /* New file
 1 files 108 bytes
 0 directories
A:>
#NEW /*Current MPC program is deleted.
#LIST /* Confirmation display = empty

#USB_LOAD "TEST.F2K" /* Try reading the file just written.
#LIST /* Confirmation display
10 DO
20 FOR I=0 TO 2
30 ON I
40 TIME 100
50 OFF I
60 TIME 100
70 NEXT I
80 LOOP
#

 ■ Reading/writing of point data

Applicable for switching models, storing work data, and the like.
[Execution example]

#DIR
 Drive A has no volume label.

File not found.
 0 files 0 bytes /* Empty USB memory
 0 directories
A:>
#USB_PSAVE "TEST.P2K" /* Current MPC point data are stored.
#DIR
 Drive A has no volume label.

4-25

2009/03/12 00:28 395 TEST.P2K /* New file
 1 files 395 bytes
 0 directories
A:>
#NEWP /* Current MPC point data are deleted.
#PLS 0 /*Confirmation display
P(1) X= 0 Y= 0 U= 0 Z= 0
P(2) X= 0 Y= 0 U= 0 Z= 0
P(3) X= 0 Y= 0 U= 0 Z= 0
P(4) X= 0 Y= 0 U= 0 Z= 0
P(5) X= 0 Y= 0 U= 0 Z= 0
P(6) X= 0 Y= 0 U= 0 Z= 0
P(7) X= 0 Y= 0 U= 0 Z= 0
(Omitted)
#USB_PLOAD "TEST.P2K" /*Try reading the point data just stored in USB memory just now.
#PLS 0 /* Confirmation display
P(1) X= 3440 Y= 17480 U= 0 Z= -19027
P(2) X= 16420 Y= 18120 U= 0 Z= -18707
P(3) X= 3200 Y= 43640 U= 0 Z= -19267
P(4) X= 29100 Y= 17960 U= 0 Z= -18947
P(5) X= 42020 Y= 17880 U= 0 Z= -18867
P(6) X= 28920 Y= 43480 U= 0 Z= -19187
P(7) X= 0 Y= 0 U= 0 Z= 0
 (Omitted)
#

 ■ Writing text data

USB_WRITE command successively performs APPEND OPEN, WRITE, and CLOSE and appends
a character string to a specified file. This function can also be applied as a data logger.
[Execution example]

#LIST /* Display the program currently in MPC.
10 FILE$="TEST.CSV" /* File name. FILE$ is a reserved variable.
20 USB_DEL FILE$ /* Delete any preexisting file having the same.
30 DO
40 FORMAT "00/00/00"
50 DT$=HEX$(DATE(0))
60 FORMAT "00:00:00"
70 TM$=HEX$(TIME(0))
80 USB_WRITE DT$+","+TM$+"\n" /* USB write
90 TIME 1000
100 LOOP
#DIR /* USB memory content = empty
Drive A has no volume label.

File not found.
 0 files 0 bytes
 0 directories
A:>
#RUN /* Execute.

@None_file /*Message when there is no preexisting file (does not stop).
 0 [90] / Stop with Ctrl+A after a while.
#DIR /* USB memory content
 Drive A has no volume label.

2009/00/02 11:02 133 TEST.CSV /* New file
 1 files 133 bytes
 0 directories

4-26

A:>
#TYPE "TEST.CSV" /* Display the file content.
09/00/02,11:02:17
09/00/02,11:02:18
09/00/02,11:02:19
09/00/02,11:02:20
09/00/02,11:02:21
09/00/02,11:02:22
09/00/02,11:02:23

A:>
#

 ■ Reading text data
USB_READ reads out character strings in a file one line at a time. The file name is specified
using FILE$.
In the following example, all content is read out and displayed. The EOF(n) function is a
function for judging if the end of a file has been reached while reading. The value 1 indicates
that the end of the file has been reached.
To stop reading the file mid-way, USB_READ -1 should be executed.

10 FILE$="AUTO.P2K"
20 DO
30 USB_READ a$: PRINT EOF(0) a$
40 IF EOF(0)==1 THEN : END : END_IF
50 LOOP

 ■ Difference of the USB function between MPC-1000/2200 and MRS-MCOM
Excluding USB_RST and USB(0) functions, there is no difference in the usage and
specification of commands.

Command Function MRS-MCOM MPC-1000/2200
USB_RST* Resetting USB process No USB memory ON/OFF USB memory ON/OFF
USB(0) Detecting USB presence Invalid (Always 1) Present:1, Absent: 0

* After USB_RST, MPC starts initialization communication with the USB memory. Therefore,
for several seconds after USB_RST no operation can be made on the USB memory.
Although the timing can be detected by the judgment of the USB() function in the MPC-
1000/2200, going through the MRS-MCOM, a timer such as TIME 2000 is used.

 ■ Errors related to USB memory
Number Meaning

USB_INUSE 53 File already in use.
USB_NONE 54 USB memory not connected.
USB_HALT 56 USB memory operation halted.
USB_NORSP 68 USB memory process not responding.
NO_FILENAME 69 File name inappropriate.
NO_FILE 70 Specified file does not exist.

* In cases where an operation error has occurred (56 and 68), the USB_RST command is
executed by the ON_ERROR process. By this command the USB memory and the USB
memory processes are restored to their initial states, and the same process is repeated.

4-27

 ■ Precautions using USB memory
1) Only USB memory products which are made by established manufacturers and confirmed
to function should be used. Among cheap or non brand name models there are some of
poor-quality which cannot endure read/write and have no reliability from the beginning.

2) USB memory should be considered as being consumable. When continuous read and
write are repeated for about one week, USB memory is damaged. The length of this period
is due to the performance limitations of the flash memory built into the USB memory.
Therefore, the USB memory should be replaced with a new one confirmed to function after a
specified degree of use.

3) USB memory of the smallest possible size should be used (2GB or smaller is
recommended). USB memory of 8GB class may be specialized for USB 3.0 or have larger
number of sectors or sector size, which slows down the response speed when connected.

4) USB memory used in an MPC should be a dedicated one and formatted using a PC before use.

5) The number of files used in USB memory should be about 10~20. If the number of files
becomes too large, the response slows down, and errors such as time-out occur.

6) File names usable in an MPC should only be in the format of “8 + 3” ASCII characters.
Long file names or Japanese file names should not be placed in the USB memory used. In
addition, no subdirectories should be created, as this can cause problems.

7) MPC supports only FAT and FAT32. FAT12 is not recognized.

CUnet

 MPC-2000 also provides a network function, by which it can perform a more complex data
communication at high speed. The network used, CUnet, is a network for FA developed and
manufactured/sold by Step Technica, and allows sharing of a 512-byte memory image on the
network. It supports up to 64 units of stations and is designed so that the shared memory
synchronizes within 2.5 msec. In order to use CUnet, MPC-2000 side is required to have
MPC-CUnet2, and the PC side USB-CUnet.
 If the operation is limited to interlocks and exchanges of simple numerical value among
MPC-2000 units, because the shared memory can be directly referred to and modified by IO
commands such as IN, OUT, SW, ON, and OFF, high-speed dispersed control can easily be
constructed.

 In addition, MPC-2000 provides an information exchange function (CU_POST, POST) which
utilizes the mail function of CUnet, and allows block transfer of point data and MBK data
area and character string exchange between MPCs and between MPC and PC. The mail
transfer unit is 15 (4 bytes*4*15) for P(n), and 120 (2 bytes*120) for MBK(n).
The software compatible with USB-CUnet for PCs can easily create applications such as VB
using the dedicated DLLs (device drivers need to be set up).

 ■ Example of usage between MPCs
Major commands:

CUNET
SW,ON,OFFI
N,OUT
CU_POST

MPC-CUnet initialization
Bit 2000~6095 operation
Bank 2000~2511 operation
CUnet mail server task started

4-28

 By appropriately initializing two MPCs as follows, their memories on CUnet can be
mutually referred to and can be used as virtual I/O.

MPC A side MPC B side
#cunet 0 8 31
#pr IN(SA_B(8))
100
#on SA(0)+10

#cunet 8 8 31
#out 100 SA_B(8)
#pr SW(SA(0)+10)
1
#

 In addition, using CU_POST and POST commands, point data of MPC wherein CU_POST
server on MPC is started can be rewritten.
 In the following example, point data (for 15) are copied to the A side by POST command
on the B side.

 MPC A side MPC B side
 CU_POST
#pls 1
P(1) X= 46217 Y= 46218 U= 1 Z= 2
P(2) X= 0 +Y= 0 U= 0 Z= 0
P(3) X= 0 Y= 0 U= 0 Z= 0
P(4) X= 111 Y= 112 U= 0 Z= 0
P(5) X= 104 Y= 105 U= 0 Z= 0
P(6) X= 120 Y= 121 U= 0 Z= 0

POST 0 P(1)

 ■ Information exchange with PC
 The following figure is a conceptual diagram of coordinating two MPC units and a PC.
High-speed interlock between MPCs and exchanges of model data and operation
information between PC and MPC become possible.

USB-CUnet

MPC#1 MPC-CUnet

MPC#2 MPC-CUnet

PC user app lication

W rite into its
own area.

Can read from all
m em bers’ areas.

USB 2.0

CUnet

CUnet

CUnet
Global

m em ory

Mail
P(n)
MBK(n)
string$

4-29

 ■ Monitoring tool
 In order to construct such a network environment, a tool which refers to data status and
modifies the data from a PC is required.
 CUnet monitor (CUMON.EXE) is a tool to check read/write of global memory and
sending/receiving of mails. In addition, it can also check the register status of MKY40
which is the main body chip of CUnet. It is used for checking the operation after a setup
or while debugging. It is freely downloadable from our company’s web site.

 ■ Visual Basic application

 � Global memory read and write
An example of VB6. Operated by reading the XY03 coordinate values, RS-485 controller
(temperature), AD voltage, and the like are written into global memory by MPC.

4-30

 � CUnet Mail communication
Sample VB6. Performs block transfers of point data and MBK data and exchanges of
character strings with MPC.

 ■ MS-EXCEL
Sample MS Excel VBA. The two hygrothermometers below are RS-485 multidrop-
connected; measured values are written onto a worksheet at constant intervals, and
simultaneously plotted.

4-31

 ■ Examples of task monitor
Using USB-CUnet and MPC-CUnet, the execution statement number of each task is found
in the same manner as in the “Touch panel connection”.
In the VB6 application example the MBK area of MPC is read and substituted for
MSFlexGrid using the cunet_req_mbk function of CUnet Mail. Useful for debugging and
maintenance.

 � VB6 program example (Periodic reading using Timer)
Private Sub Timer1_Timer()
Dim ar(0 To 119) As Long

 res = cunet_req_mbk(4, 7836, ar(0))
 ‘Reading the MBK area (120 words) Parameters: Request SA, MBK() top, stored array
 i = 0

 For c = 1 To 8 Step 2
 For r = 0 To 7
 s = CStr(ar(i) + ar(i + 1) * &H10000)
 ‘Converted to 4-byte length because MPC has "S_MBK LONG_PRG" specified.
 MSFlexGrid1.TextMatrix(r, c) = s
 i = i + 2
 Next r
 Next c

End Sub

 ■ Visual Basic 2008 Express Edition
Example of creating a program using the VB2008 Express Edition. Task statement
numbers are monitored by CUnet-Mail, and temperature and AD/DA voltage are displayed
by reading global memory.

4-32

 � VB2008 program example (Periodic reading using Timer)
Private Sub Timer1_Tick(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Timer1.Tick
 Dim ar(0 To 119) As Integer
 Dim res, i, r, c As Integer
 Dim s As String

 res = cunet_req_mbk(4, 7836, ar(0)) ‘ MBK Area Read. param= Request SA, MBK top addr, Storage array

 TextBox1.Clear()
 TextBox2.Clear()
 TextBox3.Clear()
 TextBox4.Clear()
 i = 0
 For c = 1 To 4
 For r = 0 To 7
 s = Format((i / 2), “00”) + “: “ + CStr(ar(i) + ar(i + 1) * &H10000)
 If c = 1 Then TextBox1.SelectedText = s + Chr(13) + Chr(10)
 If c = 2 Then TextBox2.SelectedText = s + Chr(13) + Chr(10)
 If c = 3 Then TextBox3.SelectedText = s + Chr(13) + Chr(10)
 If c = 4 Then TextBox4.SelectedText = s + Chr(13) + Chr(10)
 i = i + 2
 Next r
 Next c

 Label5.Text = “TEMPERATURE “ + CStr(cunet_in(2064, Cu_Int)) ‘ Global Memory Read
 Label6.Text = “AD/DA “ + CStr(cunet_in(2080, Cu_Wrd)) ‘ Global Memory Read

End Sub (For all sources of this example, see Application Note an2k-010.)

4-6 Analog Control
 MPC-AD12 is used for analog control. Both AD and DA can be easily handled with
commands. Up to two boards of MPC-AD12 can be mounted, and up to 16 CHs of AD
input and 8 CHs of DA output can be provided.

AD conversion
Function AD() is used. A value within a range of 0~4095 is obtained in the standard
state of MPC-AD12, wherein 1 digit corresponds to 1 mV. If A becomes 1000 by A =
AD(0), it means that the input was 1000 mV, namely 1 V. AD function also has a mode to
obtain an average value, wherein a value which was automatically averaged by MPC-AD12
can be obtained.

As the AD conversion IC, AD7890-4 manufactured by Analog Device is used, which
is mounted on an IC socket. This IC has another type called AD7890-10 which has
a different voltage range, and by changing to that type, +/-10 V can be handled. In
this case, the resolution will become 10/2048 mV = 4.88 mV/digit. If AD7890-10 is
necessary, it can be specified at the time of purchase.
 In addition, MPC-AD12 (CEP-125F version) can handle synchronous input. It is a
function to obtain data automatically for a pulse array, which enables handling AD
conversion wherein real-time nature is important.

DA conversion

Command DA is used for DA output. Executing DA 1000 1 outputs 1000 mV, namely 1 V, to DA-CH1.

Various kinds of settings
SET_AD command is prepared for setting the number of samples of the average values of
AD converter, configuration at the time of changing to AD7890-10, and the like.

