
7-1

 CONST HAND 15
 CONST READY 0
 CONST BUSY 1
 CONST START 192
 PG 1
 ACCEL X_A|Y_A|SACL 50000
 ACCEL Z_A|SACL 40000
 GOSUB *HOME
 PALLET 1 P(1) P(2) P(3) P(4) 4 3

 DO
 ON READY
 QUIT 1 : TIME 10
 OFF BUSY
 WAIT M_SW(START)
 OFF READY
 FORK 1 *BUSY
 FOR I=1 TO 12
 JUMP PL(1;I)
 WAIT RR(ALL_A)==0
 ON HAND
 TIME 300
 JUMP 0 0 0 0
 OFF HAND
 TIME 300
 NEXT
 LOOP
 END
*BUSY

Definition of I/Os
If symbols are assigned to I/Os using CONST in this way, making the
program more readable.

PG selection. PG of DSW1 is selected.
Speed and acceleration are set.
Configuration can be performed for each axis. SACL specifies the S-curve.
Subroutine call
Pallet declaration. Here, four points are specified.

Iteration control statement

Wait for the start switch. If there is chatter, M_SW.

Display BUSY (blinking) as a separate task.
Sequential processing, works of 1~12 are extracted.

Monitoring the end of pulse generation (movement)
Grab a glass ball.

Transport to the ejection position.
Release the glass ball.

End of sequential processing
End of iterations.

Program of a separate task.

 Chapter 7 Program Examples

7-1 Robot Applications
Here, a basic program description is illustrated using simple program examples.
Assumed is that glass balls arranged in the matrix of 4 x 3 shown below are grabbed and
ejected at the origin.
This kind of application also requires a PG configuration and return to the origin.

7-2

DO
 ON BUSY
 TIME 100
 OFF BUSY
 TIME 100
 LOOP
*HOME
 STOP ALL_A VOID
 RMVS 1000 1000 0 -1000
 WAIT RR(ALL_A)==0
 SPEED 1000
 STOP ALL_A IN0_ON
 RMVS -100000 -100000 0 100000
 WAIT RR(ALL_A)==0
 STOP ALL_A VOID
 CLRPOS
 SPEED 30000
 RETURN

Simple program which repeats LED blinking

Origin return program

Escape from the origin position

Set the speed to 1 kPPS
Specify a stopping condition. (Origin sensor)
Origin search
End if stopped.
Release the stopping condition.
Set the current position to 0.
Restore the speed.
Return from the subroutine.

Here, several conditions are set in order to make the program more readable.
The assumption is that, when turning the power on, XY should be near the origin,which, if
stopped by an origin search, the position is always the origin. After exiting the
origin search, the sensor condition and the condition of others needs to be checked.

7-2 Temperature Measurement and Data Logger
 By combining MPC-AD12 and the temperature sensor LM20, a multiple-point temperature
measurement logger can be constructed. Below is the circuit diagram of the sensor. The
distance between an OP amp and a sensor IC can be expanded by about 1 m. In the
following circuit diagram, J1 connects to MPC-AD12, and the sensor power is supplied from
MPC-AD12.
Illustrated here is a program which measures temperature data every 10 seconds in
synchronization with the calendar IC and records/stores it in USB memory.

[LM20 reference circuit diagram]

U1

4

5

3

2

1

V+

GND

Vo

GND

NC

LM20

U2

4

5

3

2

1

V+

GND

Vo

GND

NC

LM20

U3

4

5

3

2

1

V+

GND

Vo

GND

NC

LM20

U4

4

5

3

2

1

V+

GND

Vo

GND

NC

LM20

U5

TLC2264

1
2
3
4
5
6
7 8

9
10
11
12
13
14op1

in1
ni
V+
ni2
in2
op2 op3

in3
ni3
GND
ni4
in4
op4

+
+ +

+

1
2
3
4
5
6
7
8
9
10
11
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
2 0
2 1
2 2
2 3
2 4
2 5
2 6

C
C

10
4

C
C

10
4

C
C

10
4

C
C

10
4

C
C

10
4

C 10
2

R

1KR

R

1KR

R

1KR

R

1KR

C 10
2

C 10
2

C 10
2

J1
PS26

7-3

[Method of conversion to temperature data]

LM20 has the characteristic shown at left.
This is 1.86 V at 0 degree and changes by
-11.7 mV every 1 degree.
MPC-AD12 has 1 mV / 1 digit as delivered.
Therefore, 3-digit temperature data can be
obtained by the following operation.

A=(1866-AD(0))*100/117

If A becomes 254, it signifies 25.4 degrees.

 DIM DATA(4)
 TIME 500
 FILE$="log_S.txt"
 err_cnt=0
 err$=" "
*ondo
 FORK 1 *disp_lcd
 ON_ERROR *usb_err
 DO
 WAIT TIME(255)%16==0
 FOR I=0 TO 3
 DATA(I)=(1866-AD(1,I))*100/117
 NEXT
 DISP$=""
 FOR I=0 TO 3
 FORMAT " CH0_"
 DISP$=DISP$+STR$(I)
 FORMAT "00.0"
 DISP$=DISP$+STR$(DATA(I))
 NEXT
 FORMAT "000"
 OND1$=STR$(DATA(0))
 OND2$=STR$(DATA(1))
 l$=DATE$(3)+" "+TIME$(1)+DISP$+"\n"
 ON 768
 USB_WRITE l$
 PRINT l$
 TIME 1000
 OFF 768
 LOOP
*usb_err
 RST_USB
 INC err_cnt
 FORMAT "00"
 err$=STR$(err_cnt)
 PRINT "ERRORUSB"
 TIME 500
 RESUME
 END
*disp_lcd
 DO
 lcd$=err$+OND1$+OND2$
 PR_LCD lcd$
 TIME 5000
 LOOP

Specification of the log file of USB memory.
(Eight characters .TXT in DOS format)

Commence task of displaying onto an LCD.
USB memory write error definition
Iteration
Wait for timing every 10 seconds.
Iteration over 4 channels
Conversion of sensor voltage to temperature.

Counting repetition over CH0~CH3

Conversion into character strings by each channel

Generation of character strings for LCD
Generation of date data character string.

Combine date, time, and temperature data.
Write lamp lit.
Write into USB memory.
Display in FTM.

Write lamp extinguished.

USB memory write error processing.

Conversion of error count to character string.

Return to error generation command.

Display number of errors and the temperature of CH0 and
CH1 on the LCD of an MPC.

7-4

A simple data logger can be thus constructed.
Data written into USB memory is as follows. If can be referred to using an ordinary PC.

"log_S.txt"
2009-05-29 10:36:30 CH0_22.2 CH1_21.5 CH2_21.6 CH3_22.0
2009-05-29 10:36:40 CH0_22.2 CH1_21.5 CH2_21.6 CH3_22.1
2009-05-29 10:36:50 CH0_22.2 CH1_21.5 CH2_21.6 CH3_22.1

 Here, because the USB memory is a memory device containing flash memory, it can only
withstand rewriting up to about 100 thousand times (some scatter occurs depending upon
the manufacturer). If one rewrite is performed each second, 86,400 rewrites occur in 24
hours, degrading the memory.
In company tests, some were broken by about one week of continuous operation of writing
at 1-second intervals.
Therefore, it is recommended that data to be written should be buffered in an MPC if
possible to reduce the number of USB_WRITE executions.
In addition, USB memory is a device in which write errors may occur.
In order to prevent a halt in operations, it is recommended that appropriate error processing
(ON_ERROR) be built in.

7-5

7-3 MPG-2314 Servo Driver Connection Examples
 Servo drivers provide various kinds of input/output and have different connection
methods, names, and the like.
Presented here are methods of connecting representative servo drivers manufactured by
Yasukawa Electric and Panasonic with an MPG-2314, and illustrated are the corresponding
origin return methods.

Origin input

For inputting the origin IN1 of each axis, an open collector output/contact or differential
output can be connected.
In the case of the open collector output/contact, the DIP1 should be set to ON (default), and
the J4 connector should be used for connection → (Fig. 1).
For differential input, the DIP1 should be set to OFF, and the J6 and J4 connectors should be
used → (Fig. 2).
The IN0 input of each axis is only for an open collector output or contact → (Fig. 3).

* RA24 and 8 are resistance arrays for a 2-line sensor.
* RA19 has an SIP socket installed. It can be replaced if necessary.

7-6

Connection example (Yasukawa Electric Corp. SGDA-A3BP)

7-7

Connection example (Panasonic Corp. in the MINAS A4 positioning control mode)

7-8

Program example
/* Pressing down START SW → Servo ON → If near origin is ON, CW retreat movement →
/* Rotate somewhat fast in the CCW direction until near origin detection → Rotate slowly in the CCW
direction until C phase (Z phase) detection to clear coordinates
/* Afterwards, repeat pitch feed movement.
DO
 H_OFF 0 /* Serve free
 PULSE_OUT 0 5 /* START SW blinking
 WAIT SW(192)==0
 WAIT SW(192)==1 /* Wait with START SW pressed down
 PULSE_OUT VOID
 ON 0
 PG 1 /* MPG-2314 DSW=1
/* Input and pulse mode set up: (a) is CW/CCW method, (b) is the direction indication method.
/* (a) Enabled when positioning complete = on | Enabled when servo alarm = off (Pulse output is CW/CCW method.)
 INSET X_A INP_ON|ALM_OFF
/* (b) enabled when positioning complete = on | Enabled when servo alarm = off | Pulse output =
direction indication method
 'INSET X_A INP_ON|ALM_OFF|MD_DPLS
 H_ON 0 /* Servo ON
 TIME 1000
 GOSUB *HOME_X
 ACCEL X_A 50000 1000 1000
 FEED 100
 DO
 FOR I=1 TO 5
 RMVS X_A 10000
 WAIT RR(X_A)==0
 GOSUB *STOP_STATUS
 TIME 100
 NEXT I
 MOVS X_A 0
 WAIT RR(X_A)==0
 GOSUB *STOP_STATUS
 IF SW(192)==1 THEN
 BREAK
 END_IF
 TIME 1000
 LOOP
LOOP
HOME_X / X-axis origin return
 ACCEL X_A 500 100 100 /* Origin return speed
 FEED 100
 IF HPT(XIN0)!=0 THEN /* If X-axis IN0 is on, retreat movement.
 RMVS X_A 1000
 WAIT RR(X_A)==0
 TIME 100
 END_IF
 SHOM X_A IN0_ON|IN1_ON|CCW /* Near origin → Z phase detection in the CCW direction
 TMOUT 20000
 HOME -100000 0 0 0 /* Near origin detection in the CCW direction
 IF timer_==0 THEN
 PRINT "TIME OUT"
 END
 END_IF
 STPS 0 VOID VOID VOID /*X set here to ‘0’.
 PRINT "X HOME" X(0)
 TIME 1000
 RETURN
STOP_STATUS / Stop status check
 IF RR(X_E)<>0 THEN /* Stop status judged from the error status
 /*IF LMT(X_A,ALM)==1 THEN /* Stop status judged from the error input
 PRINT "Abnormal stop"
 PRX RR(X_E)
 END
 END_IF
 RETURN

